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Abstract
This book/lecture is intended for a college freshman level class in problem solving,

where the particular problems deal with electrical and electronic circuits. It can also

be used in a junior/senior level class in high school to teach circuit analysis. The

basic problem-solving paradigm used in this book is that of resolution of a problem

into its component parts. The reader learns how to take circuits of varying levels of

complexity using this paradigm. The problem-solving exercises also familiarize the

reader with a number of different circuit components including resistors, capacitors,

diodes, transistors, and operational amplifiers and their use in practical circuits. The

reader should come away with both an understanding of how to approach complex

problems and a “feel” for electrical and electronic circuits.

KEYWORDS
Circuit Analysis, Problem solving, Transistor Circuits,

OpAmp Circuits, Diode Circuits
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1

C H A P T E R 1

Introduction

1.1 OVERVIEW
In this chapter we look briefly at our approach to problem solving.

1.2 PROBLEM SOLVING

Cutting up an ox

Prince Wen Hui’s cook was cutting up an ox.

Out went a hand, down went a shoulder,

He planted a foot, he pressed with a knee,

The ox fell apart with a whisper,

The bright cleaver murmured Like a gentle wind.

Rhythm! Timing! Like a sacred dance,

Like “The Mulberry Grove,” Like the ancient harmonies!

“Good work!” the Prince exclaimed, “Your method is faultless!”

“Method?” said the cook laying aside his cleaver,

What I follow is Tao, beyond all methods!

“When I first began to cut up oxen

I would see before me the whole ox

All in one mass, “After three years

I no longer saw this mass I saw the distinctions.
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“But now, I see nothing with the eye. My whole being

Apprehends. My senses are idle. The spirit

Free to work without plan follows its own instinct

Guided by natural line, By the secret opening, the hidden space,

My cleaver finds its own way. I cut through no joint, chop no bone.

“A good cook needs a new chopper Once a year - he cuts.

A poor cook needs a new one Every month - he hacks!

“I have used this same cleaver nineteen years.

It has cut up a thousand oxen.

Its edge is as keen as if newly sharpened

“There are spaces in the joints; The blade is thin and keen:

When this thinness finds the space

There is all the room you need! It goes like a breeze!

Hence I have this cleaver nineteen years as if newly sharpened!

“True, there are sometimes tough joints. I feel them coming,

I slow down, I watch closely, hold back, barely move the blade,

And whump! the part falls away landing like a clod of earth.

Then I withdraw the blade, I stand still

And let the joy of the work sink in.

I clean the blade and put it away.”

Prince Wan Hui said, “This is it! My cook has shown me

How I ought to live My own life!”

From The way of Chuang Tzu by Fr. Thomas Merton

This poem might seem like a strange way to start a book on problem solving in elec-

trical engineering. It is not, after all, a course on oriental philosophy or the musings

of monks; nor, for that matter, is it a course on slaughtering livestock. However,
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this is a book on problem solving, and this poem is as good an analogy as any that

I have found to illustrate how you go about solving problems in engineering. Any

problem deserving of its designation initially looks like a rather large, overbearing,

and clearly unresolvable mass. It is generally understood that the problem has to be

broken down into smaller pieces before a solution can be found. But how do you go

about breaking a problem into smaller pieces? You can hack away at the problem

until, finally, dripping with sweat and gore, you succeed in breaking it down into

pieces small enough. There are several problems with this approach. It takes a long

time, it tires you out so you make mistakes, and it just does not feel cool. And

what, you say, has feeling cool got to do with solving problems? Well, look at it this

way. Your intent at this point in your life is to become an engineer—a profession

that you probably plan to follow for a major part of the rest of your life. Being an

engineer means solving problems, and if solving problems gives you a cool feeling

you will have a lot of fun. If not, you are faced with a lifetime of drudgery.

We want an approach to problem solving that reduces the amount of hacking

required. We prefer an approach that, in the words of the poem, allows us to see

the spaces between the pieces of the problems, and permits us to use the tools at

our disposal to separate the massive thing into understandable pieces. Breaking a

problem into smaller pieces is such a standard approach to solving problems that it

has a name. It is called analysis.

As the problems we are trying to resolve are not oxen, what we mean by the

spaces between the pieces, and what we mean by tools are very different from what

Prince Wen Hui’s cook meant by them. The spaces between the problems are made

clear by the rules that govern physical systems. Each part of a system interacts with

other parts of the system according to a set of rules. By discovering and using this

set of rules we can see where our points of attack should be. Our tools are whatever

we use to separate, hold apart, and recombine the pieces of the problem.

In these notes we will try to understand the process of analysis by using

circuits. The reason for this is twofold. One reason is that we want to introduce

you to some aspects of electrical engineering. The second is that the rules by which
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different parts of an electrical circuit interact are very simple and it is relatively

easy to see the spaces. As we will see in the next chapter, there are only two laws

that govern the behavior of electric circuits. Together with the rules that govern

individual components, these two laws are enough to permit us to analyze circuits.

As you learn to break down a problem into its component pieces you will find that

even the most intimidating circuit can be attacked and resolved in this manner.

Electrical engineering is a very diverse field. Look around you. Products of

electrical engineers are ubiquitous. The particular problems that we look at in these

notes belong to one small part of electrical engineering. Depending on the branch

of electrical engineering you later pursue, you may or may not use the information

provided in this book. However, I hope to give you a vision and a feel for engineering

which will be helpful to you regardless of your particular specialization.
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C H A P T E R 2

Current, Voltage,
and Circuit Laws

2.1 OVERVIEW
In this chapter we introduce the concepts of current and voltage and present two

laws that govern all electrical circuits.

2.2 ELECTRICITY, CURRENT, AND VOLTAGE
Living in the modern world means you have considerable familiarity with the uses

of electricity. You may also have received a formal introduction in your physics

classes. Electricity is (literally) in the air. Consider a simple crystal radio circuit

consisting of a coil of wire wound around an empty film cannister, an earphone,

and a diode (see Fig. 2.1).

Notice that there are no batteries in this circuit. Yet, by connecting the ground

wire to a cold water pipe (or the cable outlet), and the antenna wire to a long wire

or to yourself, you should be able to hear one or more of the nearby AM radio

stations. This is because the signal from radio stations, and TV stations, and cell

phones, are in the air all around you. The circuit converts these signals into a form

you can hear. Try this! A detailed parts list is as follows:

• 30 gauge magnet wire for tuning coil;

• one plastic film can for winding the coil;

• one germanium diode;
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Cap.

Diode

Earphone
Coil

Antenna (10' or longer)

FIGURE 2.1: A crystal radio.

• one high impedance earphone;

• one 470 pF capacitor;

• 15 ft of wire for antenna and ground connections.

If you do not want to go around looking for the parts, crystal radio kits are available

in most electronics stores.

Understanding the basic nature of electricity is beyond the scope of this book.

Rather, our goal is to get enough of an understanding of the behavior of electricity

in order to understand how electrical circuits function. We describe the behavior

of electricity using the concepts of current and voltage.

Current is a measure of the amount of charge flowing past a given point per

second and is measured in units of amperes (A). One ampere of current is the flow

of one coulomb of charge per second. An analogy to this is the flow of water past

a given point. The greater the flow, the higher the current. We often deal with

currents that are on the order of a thousandth of an ampere or a millionth of an

ampere. Using the metric naming conventions, we call a thousandth of an ampere

a milliampere (mA) and a millionth of an ampere a microampere (µA).

Voltage is the difference in potential energy between two points. Formally,

the voltage between two points is the amount of work done in moving one coulomb

of charge from the lower potential point to the higher potential point.
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Use of the words “higher” and “lower” suggest an analogy for voltage. In

physics you may have learned that energy is the ability to do work. If we raise a

rock to a height of h1 meters above the floor, the rock has some energy stored in

it. This energy can be used by releasing the rock. When the rock is released it will

hit the floor with a force proportional to its original height above the floor. Thus

the energy stored in the rock (called potential energy) is directly proportional to its

height above the floor. If we denote the potential energy by Ep, then

Ep = mgh1

where m is the mass of the rock and g is the acceleration due to gravity. Now

suppose we place a table of height h2 meters between the rock and the floor. If we

release the rock it will travel a distance of h1 − h2 meters before it hits the table.

As it travels a smaller distance (h1 − h2 meters instead of h1 meters) the force with

which it hits the table will be less than the force with which it would have hit the

floor. This is because its potential energy with respect to the table was mg (h1 − h2),

which is less than mgh1. If we examine the expression of the potential energy of

the rock, we can write it as a difference of two potential energies:

mg (h1 − h2) = mgh1 − mgh2

i.e., the potential energy of the rock at height h1 and the potential energy of the

rock at height h2. It is the difference in potential that allows the rock to do work.

The potential energy of the rock arises because of the work done against

gravity in raising it. The potential energy of interest to us in electrical circuits is

a result of work done against an electric field. The voltage difference, or voltage

between two points, is the difference in this electrical potential between two points.

This difference in potential can be used to make current flow between two

points. In terms of our water analogy, think of voltage as the difference in potential

energy of water at different heights. Water will not flow between containers at the

same level (see Fig. 2.2); however, it will flow when the containers are at different

heights (see Fig. 2.3).
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FIGURE 2.2: Nonflowing water.

Similarly, we can have two points that have a high electric potential with

respect to a reference or ground point, but whether current will flow between these

points is a function of two things: whether there is a path for the current to flow

and whether there is a difference in potential.

Consider birds sitting on a high-voltage line. There is certainly a path for the

current to flow through, but the potential difference between the two points at which

the birds’ feet are touching the wire is so small as to be negligible. Consequently,

no current flows through them, and the birds do not get cooked.

If we have two containers of water at different heights and we connect them

with a pipe, water will flow from the higher container to the lower container. But
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FIGURE 2.3: Flowing water.
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how much water will flow every second, or every minute? This depends on a number

of things including the difference in height and the size and composition of the

pipe. If we replace the hollow pipe with a pipe full of porous material, then the

porosity of the material would also figure into the calculation of the flow. Similarly,

the flow of current between two points depends on the voltage difference between

the points and the nature of the connection between the points. Using mathematical

shorthand, we can express this as an equation:

Iab = f (Nab, Vab)

where Vab denotes the voltage difference between points a and b, Iab
1 denotes the

current from point a to point b, Nab denotes the nature of the connection between

points a and b, and f ( ) denotes the functional relationships. We will explore the

functional relationship between the voltage across a component and the current

through it for a number of different components in the following chapters. In this

chapter, we will concentrate on developing universal rules or laws that hold for all

components in an electrical circuit.

The word circuit comes from the Latin circumire, which means to go around.

In our analogy, water flows from one point to another. For the water to go around

we add a little rotating gadget, as shown in Fig. 2.4, which transfers water from

the lower bucket to the upper bucket, thus completing the circuit. Obviously there

is a need for an external source of energy to complete the circuit.2 In an electrical

circuit, a battery is often our external source. In Fig. 2.5 we show a simple circuit

consisting of a battery and one other component.

1 Why represent current with I ? The best explanation I have been able to come up with is that current
used to be referred to as current intensity and, in fact, a French translation of current is intensite.
Since many of the earlier workers in this field were French, I could stand for the intensity in current
intensity.

2 In a sense this whole business of electrical circuits begins with the invention of an external (more or
less) constant source known by the rather inelegant name of the Voltaic pile invented by Allesandro
Volta. Volta was born in Como, Italy, on February 18, 1745, and died on March 5, 1827. He
published his account of the voltaic pile in 1800. The voltaic pile is the forerunner of today’s
batteries (in French as well as several other languages, a battery is called a pil ).
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FIGURE 2.4: A water circuit.

At this point let’s pause to note a few conventions. When we refer to a

difference between two values, our knowledge of the situation is incomplete unless

we know which of the two values is larger. In an electrical circuit, the size of the

difference in potential (along with the nature of the component) determines the

size of the current. However, the direction of the current through a component

is dictated by which end of the component is at a higher potential. Thus, it is

important not only to know the size of the voltage difference across a component

but also which terminal is at a higher potential level.

Recall our water analogy: if we say the difference in water level between pail

1 and pail 2 is 2 ft, we cannot tell whether water will flow from pail 1 to pail 2

or vice versa. However, if we know which one is higher, then we can tell which

direction the water will flow.

s
+
–

N

b

a

IV

FIGURE 2.5: An electrical circuit.
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If pail 1 is at a height of 3 ft and pail 2 is at a height of 5 ft, we can say that

pail 2 is higher than pail 1 by 2 ft. If their places are reversed, we can say pail 1 is

higher than pail 2 by 2 ft. We can also do the following: In the first case with pail 1

at 3 ft and pail 2 at 5 ft, we say pail 1 is higher than pail 2 by −2 ft, and in the second

case we say pail 1 is higher than pail 2 by 2 ft. We have fixed the place of pail 1 and

pail 2 in our sentence so that our sentence will always read pail 1 is higher than pail 2

by x feet, where x can be positive or negative. This might seem rather cumbersome

but, as you will see, this brings a precision to our statements, which is very useful

in solving circuits.

In an electrical circuit, for a given component we denote the terminal that

we assign to be at a higher potential with a positive (+) sign. The other terminal is

marked with a negative (−) sign. When we say that the voltage across a component

is V , we mean that the difference between the potential at the terminal marked +
(the positive terminal) and the terminal marked − (the negative terminal) is V volts.

The component N and the voltage source in Fig. 2.5 are connected by wires.

We assume that the potential along the wires is always the same. That is, the

potential difference between any two points on the wire is 0. Therefore, in the

circuit shown in Fig. 2.5, the voltage across the component N is simply Vs. If we

knew the relationship between the voltage and the current for the component N,

we could have used that to obtain the current I through the circuit. Notice in the

figure that we have also assigned a direction to the current. This is imperative as

we cannot talk about voltages and currents without assigning polarities and directions,

respectively.

Suppose Vs in Fig. 2.5 is 9 V. This means that the potential difference

between point a and point b is 9 V, with point a being at the higher potential. We

write this as Vab = 9 V. Suppose we were asked for Vba. This is the difference in

potential between point b and point a. As point a is at a higher potential Vba = −9 V.

Reversing the order of the subscript negates the value.

Similarly, suppose we had a current of 2 A flowing in the circuit from a to b.

In other words, Iab = 2 A. However, suppose we were interested in the current flow
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V

I

N

b

a
N

N

N

N1

2

3

4

5
I1

0

I2

I

I

I3

4

5

c d

FIGURE 2.6: Example of an electrical circuit.

from b to a. In this case, we would obtain a current value of −2 A, or Iba = −2 A.

Notice that the subscript for the current denotes the direction of current flow; Iab is

the current from a to b and Iba is the current from b to a. As in the case of the voltage,

reversing the order of the subscript results in negating the value of the current.

2.3 KIRCHHOFF’S LAWS
When we have a single source and single connecting component, it is a simple matter

to obtain the current through the circuit and the voltages between various points.

If we have more components and/or sources such as in Figs. 2.6 or 2.7 we need a

few more rules. These rules were developed by Gustav Kirchhoff 3 and are known

as Kirchhoff ’s Laws or more specifically Kirchhoff ’s current law and Kirchhoff ’s

voltage law. These laws govern how all electrical circuits behave. Although they are

very simple, they are essential tools for analyzing circuits. The Kirchhoff ’s laws can

easily be understood in terms of our water analogy.

2.3.1 Kirchhoff ’s Current Law
Kirchhoff ’s current law (KCL) relates to currents entering and leaving a node. A

node is a junction in the circuit where two or more components are connected.

The word “junction” is used somewhat loosely here. Consider Fig. 2.6. The voltage

source and the components N1 and N2 are connected at node a. The components

3 Gustav Robert Kirchhoff was born in Koenigsberg, Germany, on March 12, 1824, and died on
October 17, 1887. Working with Bunsen (of the Bunsen burner fame), Kirchhoff also discovered
that glowing vapors absorbed light of definite wavelengths.
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N4

I1 N3V1

I0

N1

b

a
N2

c

V2

I2

I3

I4

I5
�
�

�
�

FIGURE 2.7: Another example of an electrical circuit.

N2, N3, and N4 are connected at node c. In both of these cases, the nodes correspond

to points on the circuit diagram. However, node b at which the components N1, N3,

N5, and the source come together is the bold line shown at the bottom of the figure.

Kirchhoff ’s law states that the current entering a node is always equal to the

current leaving a node. If we consider the analogous situation in our water example,

we can see that this has to be true. Consider the situation shown in Fig. 2.8. If there

is a continuous flow of water, obviously the amount of water entering the junction

is equal to the amount of water leaving the junction.

In the part of a circuit shown in Fig. 2.9, the current entering the node b is

the current Iab. The currents leaving node b are the currents Ibc and Ibd. Therefore,

according to the KCL

Iab = Ibc + Ibd

A simple way of checking whether you have written an equation correctly is

to check the subscripts. Given our convention the second subscript of all currents

FIGURE 2.8: A joining of pipes.
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da

c

b

FIGURE 2.9: A part of a circuit.

entering a node x should be x, while the first subscript of all currents leaving node

x should be x.

Kirchhoff ’s current law can also be stated as the algebraic sum of all currents

entering a node is zero. If we look at node c in the circuit shown in Fig. 2.6, the KCL

says that

I2 = I3 + I4 (2.1)

In terms of our earlier naming convention, this is the same as saying

Iac = Icb + Icd

The currents entering node c are Iac, Ibc, and Idc. Therefore, according to the

second statement of the KCL

Iac + Ibc + Idc = 0 (2.2)

At the end of the previous section we said that reversing the order of the sub-

scripts results in negating the current value. Therefore, if Icb = I3, then Ibc = −I3,

and if Icd = I4, then Idc = −I4. Substituting these in Eq. (2.2) we get

I2 − I3 − I4 = 0 (2.3)

which is the same as Eq. (2.1). Both statements of the KCL mean exactly the same

thing.

Let’s see how we would use the KCL in practice.
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5 mA 3 mA IoA B C

a

b

FIGURE 2.10: An application of KCL.

Example2.3.1: Consider the circuit shown in Fig. 2.10. There are three components

A, B, and C connected to form a circuit. Suppose we measure the current through

A and B and come up with the measured values indicated in the figure. What is

the value of the current marked Io?

Following the example of Prince Wen Hui’s cook, the first thing we do is look

for the spaces between the components of the problem. We know the behavior of

currents at nodes; therefore, in the case of electrical circuits, the spaces are generally

the nodes. In this circuit we have only two nodes named a and b. Our “knife” is the

current law and we can apply it to either of the nodes. Let’s apply it to the node

labeled b. At this node, the current with a value of 3 mA flows to node b through

the component marked B, and 5 mA flows from node b through the component

marked A. Because the current marked Io is the only other current entering the

node, it has to have a value that will make the total current entering the node equal

to the total current leaving the node. That is,

Io + 3 mA = 5 mA

or Io is 2 mA.
Let’s look at one more circuit which, at first glance, looks somewhat more

complicated.

Example 2.3.2: Consider the circuit shown in Fig. 2.11. We have five components

instead of three and twice the number of nodes we had in the previous example.

However, it is actually no more difficult to solve than the previous problem. The
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A C

B

E

D

p q

r s
Io

3 mA5 mA

FIGURE 2.11: Another application of KCL.

important thing is not to get distracted by the size of the circuit and concentrate

on the nodes. In this problem the unknown current Io enters node r; therefore, we

look at the currents entering or leaving this node. From the figure, it is clear that

the currents entering node r are Io and 3 mA, and the current leaving node r is

5 mA. Therefore, once again Io has a value of 2 mA.

Finally, let’s look at a circuit where we need multiple applications of the KCL

to get our answer.

Example 2.3.3: Consider the circuit shown in Fig. 2.12. This circuit has consider-

ably more components than the previous two. Again, we wish to find the current

marked Io. This is the current leaving node f and entering node g. We can apply

the current law to either of these nodes to begin the process of finding the value of

Io. Let’s apply KCL to node f. The current entering node f is Idf and the current

3 A7 A

a b

c

d

e

f

g

2 A Io

Q S V

P R U X

WT

FIGURE 2.12: Another application of KCL.



P1: IML
MOBK001-02 Morgan & Claypool Morgan-v3.cls September 29, 2005 7:32

CURRENT, VOLTAGE, AND CIRCUIT LAWS 17

leaving node f is Ifg, which is the same as Io. Therefore,

Io = Ifg = Idf

To find Idf we apply KCL to node d. The currents entering node d are Ibd

and Ied, while the current leaving node d is Idf. Therefore,

Idf = Ibd + Ied

From the figure we can see that Ied = 2 A. Therefore,

Io = Idf = Ibd + 2 (2.4)

To find Ibd we apply KCL to node b. The current entering node is Iab, while

the currents leaving node b are Ibc and Ibd. Therefore,

Iab = Ibc + Ibd

or

Ibd = Iab − Ibc

As Ibc = 3 A

Ibd = Iab − 3

Substituting this expression for Ibd in Eq. (2.4) we obtain

Io = Iab − 3 + 2 = Iab − 1 (2.5)

To find Iab we look at node a, where Iab is the current leaving the node and

Ica is the current entering the node. Therefore,

Iab = Ica

From the figure Ica = 7, therefore, Iab = 7. Substituting this value for Iab

into Eq. (2.5) we get Io = 6.
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Quite a few steps were necessary to obtain the solution in this last example.

However, notice that each step of the solution was a very straightforward application

of a simple rule. As we study more and more complicated looking problems, it will

be extremely important that we do not get distracted by the complexity of the

overall problem and instead focus on the simplicity of the steps needed to solve

the problem. Simple step by simple step, we will be able to solve the most difficult

problems.

2.3.2 Kirchhoff ’s Voltage Law
Kirchhoff ’s voltage law (KVL) states that the voltage difference between two points

is the same regardless of the path we take between them. Let’s make use of our

height analogy to get a mental picture of what we mean by the KVL. Consider the

situation shown in Fig. 2.13. The height difference between level a and level c is

h1. If we place a rock of mass m at level a, the potential energy of the rock with

respect to level c will be mgh1. If we go from level a to level b the change in height

is h2. The change in height from level b to level c is h3. Clearly

h1 = h2 + h3

and

mgh1 = mgh2 + mgh3

Whether we go directly from a to c, or go first to b and then to c, the change,

or difference, in potential energy is the same.

a

c

b

h3

h2

h1

FIGURE 2.13: A case of heights.
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In Fig. 2.6 the voltage difference between nodes a and c is denoted by Vac.

We could go from node a directly to node c via component N1, or we can go from

node a to node b and from there to node c. The voltage difference between nodes a

and b is Vab, and the voltage difference between nodes b and c is Vbc. According to

the KVL,

Vab = Vac + Vcb

A consequence of this is that if we traverse any closed path in a circuit, the

algebraic sum of the voltages is zero. Consider the circuit in Fig. 2.6 and the path

acba. Vaa is the potential difference between point a and point a, which is zero (just

as the difference in height between level a and level a is zero). We can get from a

to a by going first to b then to c and then back to a. Therefore,

Vaa = Vab + Vbc + Vca = 0

Example 2.3.4: Consider the circuit in Fig. 2.14. The voltage difference between

nodes a and c is 9 V, while the voltage difference between nodes b and c is 6 V. In

other words,

Vac = 9 V

Vbc = 6 V

a b

c

��

Light
Bulb

Battery
9 V

Battery
6 V

––

FIGURE 2.14: Two batteries and a lamp.
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We wish to find the voltage across the lamp. By KVL

Vac = Vab + Vbc

or

Vab = Vac − Vbc

which means that Vab = 3 V.

We can go from b to c in two different ways, directly or via node a. Therefore,

we can write

Vbc = Vba + Vac

from which we obtain Vba = −3 V. As with the case of the currents, notice that

reversing the subscript results in a negation of the value and Vab = −Vba.

Let’s continue with another example, which is slightly more complicated.

Example 2.3.5: Consider the circuit shown in Fig. 2.15 consisting of four compo-

nents labeled A, B, C, and D. The voltage across component A is 5 V and across

component D is 12 V. We are asked to find the voltage labeled Vo across the com-

ponent labeled B. We first identify the nodes in this circuit and label them x, y, and

z. (Can you see why there are only three nodes in this circuit?) The voltage across

the component labeled A is the potential difference between nodes z and x with

node z being at the higher potential. That is, Vzx = 5 V. Similarly we can see that

�  5 V  �

12 V

�

�

�

Vo
�

A

B

C

D

y

z

x

FIGURE 2.15: An application of KVL.
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Vyz = 12 V and the unknown voltage Vo is the same as Vyx. Using KVL,

Vyx = Vyz + Vzx = 12 + 5 = 17 V

Although initially the problem looked complicated, it really was not.

Finally, let us take an example from everyday life.

Example 2.3.6: Suppose your car battery runs down. Instead of the required 12 V

across it, you are getting 10 V, so you ask for a jump from a friend. The correct

procedure is to connect the positive terminals of the batteries (the negative terminals

are already connected to the car chassis), and connect the chassis(s) to each other.

As you do so, right before you connect the chassis, the situation is similar to as

shown in Fig. 2.16. We want to find the voltage Vg across the gap. At the bottom of

a

b c

vg

vg

13 V 10 V

� +

++

Your 
Battery

Friend's
Battery

Chassis Chassis

+–

––13 V 10 V
� �

FIGURE 2.16: Correct way to connect the batteries.
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Fig. 2.16 we have redrawn the circuit and identified and labeled the nodes. From

this figure we can see that Vg is the same as Vcb, the potential difference between

nodes c and b. We know the voltages Vab (13 V) and Vac (10 V). In order to find

Vcb we need to write this voltage in terms of the known voltages. Using the KVL,

we can write Vcb as

Vcb = Vca + Vab

We know that Vac is 10 V; therefore, Vca is −10 V and

Vcb = −10 + 13 = 3 V

Thus, the voltage across the gap is 3 V.

What happens when we incorrectly connect the negative terminal of your

friend’s battery to the positive terminal of your battery as shown in Fig. 2.17? Again

we have redrawn the circuit and identified and labeled the nodes in the bottom half

of the figure. The voltage across the gap Vg is still Vbc, and Vac is still 10 V. However,

a

b c

13 V 10 V

� �

��

vg

Your 
Battery

Friend's
Battery

Chassis Chassis

vg +

13 V 10 V�
��

�

–

FIGURE 2.17: Incorrect way to connect batteries.



P1: IML
MOBK001-02 Morgan & Claypool Morgan-v3.cls September 29, 2005 7:32

CURRENT, VOLTAGE, AND CIRCUIT LAWS 23

in this configuration Vab is −13 V. As Vcb is still given by

Vcb = Vca + Vab

the voltage across the gap is

Vg = Vcb = −10 − 13 = −23 V

This is not a safe situation.

In the examples provided for the KCL, you may have noticed that we had

circuits in which some of the currents were known and, in the examples provided

for the voltage law, the voltages were known. In practice (for a given circuit) we may

know voltages across some components and currents through others. In order to

apply the current law or the voltage law, we need to convert the voltages across the

components to the currents through them, or vice versa. For this to happen we need

to know the relationship between the voltage across a particular component and

the current through it. We call this relationship the component rule. In the following

chapters, we will see how we can use these component rules and the Kirchhoff ’s

laws to solve what initially look like complicated circuits. In the process we will

introduce you to some of the components commonly used in electrical circuits.

Throughout the analysis you need to keep in mind that in order to solve a problem

you may have to take many steps. However, each step is very simple. Like Prince

Wen Hui’s cook, if you concentrate on the spaces, which for us will mainly be the

nodes, the problem will resolve itself simply.

2.4 SUMMARY
In this chapter we introduced the two circuit laws that govern all circuits and will be

with us from here on. The Kirchhoff ’s current law or KCL states that the current

entering a node is equal to the current leaving the node. The Kirchhoff ’s voltage law

or KVL states that the voltage difference between two points is independent of the

path taken to get from one point to the other. These are very simple statements and
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it would be easy to underestimate their power. We will find in later chapters that

these two laws along with rules describing the behavior of individual components

is all we need to analyze even the most complex circuit.

2.5 PROJECTS AND PROBLEMS
1. In the circuit shown below find Io.

5 mA 3 mA

Io

2. In the circuit shown below find Io.

5 mA

Io

3 mA

4 mA

3. In the circuit shown below find Vo.

12 V

�

8 V

� �

�

Vo� �



P1: IML
MOBK001-02 Morgan & Claypool Morgan-v3.cls September 29, 2005 7:32

CURRENT, VOLTAGE, AND CIRCUIT LAWS 25

4. In the circuit shown below find Vo.

12 V

�

9 V

� �

�

Vo� �

5. In the circuit shown below find Io.

A C

B

E

D

p q

r s
Io

3 mA5 mA

6. In the circuit shown below find Io.

3 A7 A 2 A Io

Q S V

P R U X

WT

7. In the circuit shown below find Vo.

�  6 V  �

12 V

�

�

�

Vo
�

A

B

C

D
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8. In the circuit shown below find Vo.

12 V

D

A C

B

+

��

–

+ –

+ –

��
+

–

IA

IB VB

VD

Vo

IC

ID

5 V

2 V

9. In the circuit shown below find Vo, V1, and V2.

10 V
�

�

�  4 V � �  2 V �

�

3 V
�

Vo
� �

�

�

V

�

�

V
1 2
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C H A P T E R 3

Resistive Circuits

3.1 OVERVIEW
In this chapter we see how we can use the Kirchhoff ’s laws together with component

rules to analyze circuits. We also begin looking at various components used in

electrical circuits. We start with the simplest component—the resistor.

3.2 INTRODUCTION
In the previous chapter we described the two laws that we will use to analyze

all kinds of circuits. One law deals with currents at a node and the other with

voltage between two points. Also, we ignored the nature of the components and

assumed that we somehow know the currents and voltages necessary to obtain the

information we desire. In order to apply the Kirchhoff ’s laws we often need to know

the relationship between the current through the component and the voltage across

it. As the circuits become more complicated it is also useful to have a procedure for

attacking the problem. Like Prince Wen Hui’s cook, we have to identify the spaces

and then separate the problem along these spaces. In circuits the spaces will be the

nodes in the circuit. The tools we use at these spaces will be the Kirchhoff ’s laws

along with the current–voltage relationship for the component. Let’s develop our

procedure using a simple example.

Example3.2.1: Consider the circuit shown in Fig. 3.1, which consists of the mystery

components A, B, and C. We do not know what these components are. All we know
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i
A

+

–

+

– +

–

B

C

i

i

v

vv
A

B

C

a

b

c

o

�
�

�

�

V
A

B

C

10 V

FIGURE 3.1: A collection of boxes.

is that they have the following current–voltage relationships:

IA = 0.1 VA (3.1)

IB = 0.05 VB (3.2)

VC = 2.5 + 10 IC (3.3)

Is this sufficient to compute Vo? Let’s find out.

Let’s start with counting the nodes. There are three nodes in this circuit.

One is at the top of the figure where components A, B, and C come together. One

is between component B and the 10-V source, and one is at the bottom of the

figure where components A, C, and the voltage source are joined. Let’s name these

nodes a, b, and c. We will attempt to find the voltage at each node with respect to a

reference node. Once we know the voltage of all nodes with respect to a reference

node the voltage difference between any two nodes can always be found as the

difference between the voltages of those nodes with respect to the common node.

For example, suppose we know Vbx and Vax, where x is the common node. Suppose

we wished to find Vab. Using KVL we know that

Vax = Vab + Vbx
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or

Vab = Vax − Vbx

Because the voltage of a node with respect to the reference node is so useful we will

give it a special name and call it the node voltage.

In our circuit, let’s select node c as the reference node. The voltage of node

c with respect to itself is of course 0. The voltage of node b with respect to node c

is simply the potential difference across the voltage source, which is 10 V. And we

are left with only one node, node a, with an unknown voltage. All we know about

a node is that the current entering the node will be equal to the current leaving the

node. Looking at node a we see that there is no current entering the node and we

have IA, IB, and IC leaving the node. Thus,

IA + IB + IC = 0

We would like to write this equation in terms of the voltages at each node with

respect to the reference node. We will get there in two steps. First, write the currents

through the components in terms of the voltages across the components. We can

do this by using the component rules specified in Eqs. (3.1)–(3.3). We replace IA

with 0.1 VA, IB with 0.05 VB and IC with (VC − 2.5)/10 to obtain

0.1 VA + 0.05 VB + VC − 2.5
10

= 0 (3.4)

From the circuit we can see that

VA = Vac

VB = Vab

VC = Vac

Substituting these into Eq. (3.4) we obtain

0.1 Vac + 0.05 Vab + Vac − 2.5
10

= 0 (3.5)

In this equation Vac is the voltage of node a with respect to the reference node;

however, Vab is not a voltage with respect to the reference node. As noted earlier
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we can write the voltage between any two nodes in terms of the voltages of those

nodes with respect to a common node. Thus,

Vab = Vac − Vbc

Noting that Vbc = 10, we obtain

Vab = Vac − 10

Substituting this in Eq. (3.5) we get

0.1 Vac + 0.05(Vac − 10) + Vac − 2.5
10

= 0 (3.6)

which is all in terms of Vac. Solving for Vac we obtain Vac = 3 V.

We had originally wanted to compute Vo. Looking at Fig. 3.1 we can see

that Vo = Vac. Therefore Vo = 3 V.

In this example we have applied the Kirchhoff ’s laws in a systematic way.

Systematic procedures are nice to know because they can be used to solve a large

number of problems. They allow us to concentrate on the spaces rather than on

the whole problem. Let’s write down the procedure used in the previous example

in general terms. The steps we took were as follows:

1. Identify all nodes in the circuit.

2. Select one of these nodes as the reference node.

3. At each node, which is not the reference node, either

(a) write the node voltage, the potential difference between the node and

the reference node, or,

(b) write the Kirchhoff ’s current law at the node.

4. Wherever possible, write the currents in the equations in terms of the

voltages across the components.

5. Write the voltages in terms of the node voltages, the voltage of each node

with respect to the reference node.
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FIGURE 3.2: Another collection of boxes.

If you have a total of N nodes, at this point you will have at most N − 1

equations with N − 1 unknowns. The unknowns will be the potential difference

between all nodes and the reference node. You can solve these equations with

whatever tools you have at your disposal.

This procedure will work for most of the circuits you encounter. For the

remaining, we will have to modify the procedure. Let’s look at an example where

we do have to modify the procedure.

Example 3.2.2: Consider the circuit shown in Fig. 3.2. Suppose we are given the

following rules for the components:

IA = VA (3.7)

IB = 0.125 VB (3.8)

ID = 0.25 VD (3.9)

and asked to find the voltage across component D. Let’s follow the steps of our

procedure as far as we can.

The first step is to identify the nodes. We have done so in the Fig. 3.3 and

marked them with the letters a, b, c, and d. We have also relabeled the currents.

The current IA is the current going from node a to node b, so we have labeled it Iab.

Similarly the current IB is the current from node b to node d and is therefore labeled

Ibd. The same is true for IC and Ibc, and for ID and Icd. Next we have to pick a

reference node. Let’s pick that to be node d. Now let’s visit each node.
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FIGURE 3.3: Labeled collection of boxes.

node a: We can write the voltage at node a with respect to node d by inspection.

Vad = 10 V

node b: At node b we can write the current law as

Iab = Ibd + Ibc (3.10)

node c: At node c the current entering the node is Ibc and the current leaving the

node is Icd. Therefore we can write the current law as

Ibc = Icd (3.11)

We have two equations in terms of the currents. Now, let’s try and write

these currents in terms of the voltages across the components. The current Iab is

the current through component A. From Eq. (3.7) we can see that the current

through component A is equal to the voltage across the component

Iab = Vab

The current Ibd is the current through component B. From Eq. (3.8)

Ibd = 0.125 Vbd

Similarly, using Eq. (3.9)

Icd = 0.25 Vcd
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However, we do not have any information about the relationship between

the current through component C and the voltage across it. Therefore, we cannot

write Ibc in terms of Vbc. To see how we get around this problem let’s write the

other currents in terms of the respective voltages:

Vab = 0.125 Vbd + Ibc (3.12)

Ibc = 0.25 Vcd (3.13)

We can see that we can substitute the expression for Ibc from Eq. (3.13) in Eq.

(3.12) to obtain

Vab = 0.125 Vbd + 0.25 Vcd (3.14)

Let’s now rewrite this equation in terms of the voltages at each node with respect

to the reference node.

Vad − Vbd = 0.125 Vbd + 0.25 Vcd (3.15)

Substituting the value for Vad we get

10 − Vbd = 0.125 Vbd + 0.25 Vcd (3.16)

We have two unknowns, Vbd and Vcd, and only one equation! However, we have

not used all the information available to us. Looking at Fig. 3.2 we see that the

voltage across component C is 4 V, or Vbc = 4. Writing Vbc in terms of voltages in

terms of the reference node we get

Vbd − Vcd = 4 V (3.17)

which is our second equation. Given two equations with two unknowns we can

solve for Vbd and Vcd and obtain

Vbd = 8 V

Vcd = 4 V
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V
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a b

FIGURE 3.4: A resistor.

We have discovered some spaces using the rules that allow a circuit to function

as a whole. These rules include the two Kirchhoff ’s laws and the rules that relate

the current through a component to the voltage across it. We have found that the

spaces we need to concentrate on are the nodes in the circuit. In the next section

we introduce the simplest of all electrical components, the resistor, and apply what

we have learned to solving circuits containing resistors.

3.3 THE RESISTOR
The simplest kind of connection analogous to a hollow pipe is something called

a resistor. The symbol for the resistor is shown in Fig. 3.4. Resistors with a high-

resistance value will let less current flow through it for a given voltage than a resistor

with a low-resistance value. The most popular kinds of resistors are linear resistors.

When we say a function is linear we mean that the function f () or g() corresponds

to a line through the origin. In particular

V = IR (3.18)

where R is the resistance measured in ohms1 with symbol �. or

I = GV (3.19)

1 George Simon Ohm was born in Erlangen, France, on March 16, 1789. He published his observa-
tions on the relationship between voltage, current, and resistance in 1827. The work was not well
received and Ohm was so upset that he resigned from his academic position.
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FIGURE 3.5: An example of a resistive circuit.

where G = 1/R is called the conductance and is measured in siemens with a sym-

bol S.2 The law relating the current through a resistor to the voltage across it [Eq.

(3.18)] is called Ohm’s law. If we plot V versus I in these equations we can see

that the plot is a straight line through the origin, i.e., the resistor is a linear com-

ponent (our earlier declaration). Note that this relationship is valid only when the

current I flows from the assumed positive terminal of the resistor to the assumed negative

terminal.

3.4 RESISTIVE CIRCUITS
Let’s examine how we would go about analyzing a circuit that consists of voltage

sources and resistors. Consider the circuit shown in Fig. 3.5. Suppose we are asked

to find all the voltages and currents in the circuit. Recall that if we know the function

relating the voltage across a component to the current through the component and

we know the voltages at each of the nodes with respect to a common reference node,

we can easily find the currents through the components. Once we have identified

the nodes our next task is to choose one of the nodes as the reference node. As

we are going to find the voltage of all other nodes with reference to the reference

node, it makes the algebra simpler if we select the node that has the largest number

of components attached to it. In the case of the circuit shown in Fig. 3.5, it is

node e.

2 Because conductance is the inverse of resistance it is sometimes measures in mhos with the symbol
being an upside down �.
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Having declared node e to be our reference node, we go to each of the other

nodes and based on the information available to us we do one of two things:

1. Determine the voltage at that node with respect to the reference node. OR

2. Write the current law at the node.

Node a: We begin with node a. From the circuit diagram in Fig. 3.5 it is clear that

the potential difference between node a and node e is Vs volts, or

Vae = Vs (3.20)

Node b: The potential difference between node b and node e is not immediately

apparent so we write the current law at this node. Given the current directions

shown in the circuit diagram we can see that we have one current (I0) entering

the node and two currents (I1 and I2) leaving the node. Therefore, according

to the Kirchhoff ’s current law

I0 = I1 + I2 (3.21)

Node c: Similarly at node c the potential difference between node c and node e is

not immediately apparent, therefore, we write the current law at this node.

We have the current I2 entering the node and the currents I3 and I4 leaving

the node. Therefore,

I2 = I3 + I4 (3.22)

Node d: At node d we have current I4 entering the node and the current I5 leaving

the node. Therefore, according to the current law

I4 = I5 (3.23)

The next step is to write each of these currents in terms of the voltages across

the resistors. At this stage we need to be careful that the directions we have assigned

to the currents agree with the assumed polarities. For example, I0 = Vab/R0 and

not Vba/R0. We can express each of the currents in terms of the voltages across the
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respective resistors using Ohm’s law. Thus,

I0 = Vab

R0
I1 = Vbe

R1

I2 = Vbc

R2
I3 = Vce

R3

I4 = Vcd

R4
I5 = Vde

R5

Substituting these in Eqs. (3.20)–(3.22) we obtain

Vab

R0
= Vbe

R1
+ Vbc

R2
(3.24)

Vbc

R2
= Vce

R3
+ Vcd

R4
(3.25)

Vcd

R4
= Vde

R5
(3.26)

Now we express all voltages in terms of the voltage at each node with respect to

the reference node. Thus we replace Vab by Vae − Vbe, Vbc by Vbe − Vce, and Vcd by

Vce − Vde. Finally, noting that Vae = Vs we obtain the following equations:

Vs − Vbe

R0
= Vbe

R1
+ Vbe − Vce

R2
(3.27)

Vbe − Vce

R2
= Vce

R3
+ Vce − Vde

R4
(3.28)

Vce − Vde

R4
= Vde

R5
(3.29)

If we know the values of the resistors, the unknowns in these equations are Vbe, Vce,

and Vde. We have three linear equations and three unknowns. Three equations with

three unknowns is really not a big deal and we can easily solve this. Even if the

problem gets larger there are a number of tools available for solving linear equations

and we can easily obtain these voltages. Once we have the node voltages we can

obtain any voltage or current we desire. For example, suppose we were asked for
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5 Ω 5 Ω

5 Ω10 Ω10 V

a b c

d

Io�
–

FIGURE 3.6: An example of a linear circuit.

the voltage Vbd. This is easily obtained as

Vbd = Vbe − Vde

How would you find the current Ica through the voltage source?

There are all kinds of variations we can have on this basic theme. Let’s take

a look at a few examples.

Example 3.4.1: Consider the circuit shown in Fig. 3.6. Suppose we are asked to

find the current Io. If we knew the voltage Vcd across the 5� resistor at the right,

we could then obtain the current Io using Ohm’s law. We have four nodes a, b, c,

and d. Let’s pick node d to be the reference node. We go to each of the other nodes

and either write the voltage at that node with respect to the reference node, or write

the current law at that node.

At node a: Vad = 10 V

At node b: Iab = Ibd + Ibc

At node c: Ibc = Icd

Notice that each of the currents is the current through a resistor. Using Ohm’s

law we can write each of these currents as the voltage across the resistor divided by

the resistance value.

At node b:
Vab

5
= Vbd

10
+ Vbc

5
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At node c:
Vbc

5
= Vcd

5

To simplify these equations we multiply the first one by 10 and the second

one by 5.

2Vab = Vbd + 2Vbc (3.30)

Vbc = Vcd (3.31)

We have two equations but four unknowns. To reduce the number of unknowns

we write these voltages in terms of the node voltages. Substituting Vab = Vad − Vbd

and Vbc = Vbd − Vcd and using the fact that Vad = 10 V we obtain

2(10 − Vbd) = Vbd + 2(Vbd − Vcd) (3.32)

Vbd − Vcd = Vcd (3.33)

We have reduced the number of unknowns to two: Vbd and Vcd. With two equations

and two unknowns we can solve for the unknowns and we obtain

Vcd = 2.5 V

From which we get

Io = 2.5
5

= 0.5 A

Suppose we also wanted to find the voltage Vac and the current through the

voltage source Ida.

Vac = Vad − Vcd

Therefore,

Vac = 10 − 2.5 = 7.5 V

To find Ida we need to write the current law at node d.

Ida = Ibd + Icd
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FIGURE 3.7: Another example of a linear circuit.

The current Icd is the same as Io, which we have already found to be 0.5 A. The

currents Ibd can be obtained using Ohm’s law if we know Vbd. We can obtain Vbd

from Eq. (3.33).

Vbd = 2Vcd = 5 V

Therefore,

Icd = 5
10

= 0.5 A

and

Ida = 0.5 + 0.5 = 1 A

Example 3.4.2: Let’s look at a slightly different problem as shown in Fig. 3.7.

At first glance this looks more complicated. There are five nodes instead of four.

However, if we look at this a bit closer we notice that (assuming node e is the

reference node), as in the case of the circuit in Fig. 3.6, we again have only two

nodes, node b and node d, for which we do not know the node voltages. The voltage

at node a with respect to node e is 10 V, while the voltage of node c with respect to

node e is 5 V. In order to find the voltages at nodes b and d with respect to node e

we write the current law at these nodes.

At node a: Vae = 10 V

At node b: Iab = Ibc + Ibd

At node c: Vce = 5 V

At node d: Ibd = Ide
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Each of the currents in these equations is a current through a resistor. We

can use Ohm’s law to write the current through each resistor in terms of the voltage

across that resistor.

Vab

5
= Vbc

10
+ Vbd

5
(3.34)

Vbd

5
= Vde

5
(3.35)

Multiplying the top equation by 10 and the bottom equation by 5 we get

2Vab = Vbc + 2Vbd (3.36)

Vbd = Vde (3.37)

Writing these voltages in terms of the node voltages and substituting Vae = 10 V

and Vce = 5 V we get

2(10 − Vbe) = Vbe − 5 + 2(Vbe − Vde) (3.38)

Vbe − Vde = Vde (3.39)

Solving for Vde (which is the same as Vo) we obtain

Vo = Vde = 3.125 V

In the previous examples, we have been using resistors and voltage sources.

However, the Kirchhoff ’s laws are not restricted to these components.

Example 3.4.3: Consider the circuit shown in Fig. 3.8. This looks very much like

the circuit in Fig. 3.6 so we can write the current law at nodes b and c.

At node a: Vad = 10 V

At node b: Iab = Ibd + Ibc

At node c: Ibc = Icd

At this point we run into a problem. The component between nodes b and c

is not a resistor so we cannot write the current Ibc in terms Vbc using Ohm’s law. In
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FIGURE 3.8: Yet another example of a linear circuit.

fact we do not know anything about this component except that the voltage across

it is 5 V. Let’s use what information we have leaving Ibc alone for now. Writing the

currents through resistors in terms of voltages across resistors we get

Vab

5
= Vbd

10
+ Ibc (3.40)

Ibc = Vcd

5
(3.41)

We can substitute the value of Ibc from Eq. (3.41) into Eq. (3.40) to obtain

Vab

5
= Vbd

10
+ Vcd

5

Simplifying this equation by multiplying it by 10

2Vab = Vbd + 2Vcd

and writing the voltages in terms of the node voltages we obtain

2(Vad − Vbd) = Vbd + 2Vcd

Substituting Vad = 10 we have

20 − 2Vbd = Vbd + 2Vcd

We have one equation and two unknowns, Vbd and Vcd. If we had no informa-

tion about the mystery component, we would be stumped at this point. Fortunately,



P1: IML/FFX P2: IML/FFX QC: IML/FFX T1: IML

mobko1-03 Morgan & Claypool Morgan-v3.cls September 29, 2005 7:31

RESISTIVE CIRCUITS 43

we do have some additional information. We know that

Vbc = 5 V

Writing this voltage in terms of the node voltages we get our second equation

Vbd − Vcd = 5 V

With two equations we can solve for the two unknowns and we get

Vo = Vcd = 1 V

Example 3.4.4: Let’s see if we can use what we have learned to this point to design

a circuit. Suppose we have need for a 5 V source, perhaps to power a logic circuit,

but we only have a 9 V battery available. We know that if we connect a sequence

of resistors to the 9 V battery we will get differing voltages across the resistors.

Therefore, a possible solution to our problem would be a circuit of the form shown

in Fig. 3.9. So what should R1 and R2 be? Let’s start with what we know and write

the current law at node b.

Iab = Ibc

Picking node c to be the reference node we can see that Va = 9 V and Vb =
5 V. Therefore, we can write the current law as

9 − 5
R1

= 5
R2

a b

9 V

c

+

5 V

–

R1

R2

�
–

FIGURE 3.9: voltage divider.
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a b

9 V 12.5 kΩ

c

+

5 V?

–

10 kΩ

�
–

FIGURE 3.10: Still 5 volts?

We have one equation and two unknowns. When we have fewer equations

than unknowns we can pick a value for one of the unknowns and solve for the other.

Let’s pick R1 to have a value of 10 k� (we could have picked any other value as

well). Solving for R2 we obtain R2 = 12.5 k�.

Substituting these values for the resistors in Fig. 3.9 we will obtain 5 V

between nodes b and c. However, will the voltage still be 5 V after we have connected

the system that needs the 5 V as shown in Fig. 3.10?

What do you think could go wrong? What would we need to do to ensure

that the voltage stays at 5 V?

3.5 SUMMARY
In this chapter we have introduced our first component, the resistor, and its com-

ponent rule, the Ohm’s law (V = IR). Using the two circuit laws KVL and KCL

and the component rule we have shown that we can analyze any resistive net-

work.

3.6 PROJECTS AND PROBLEMS
1. In the circuit shown in Fig. 3.11 what do you think will happen when we

open the switch? Why? What is the function of the resistor? What practical

use can you make of this circuit?
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Buzzer

Switch
Battery

Resistor

–
�

2. In the circuit shown in Fig. 3.12 what will happen as the switches are

opened? Why?

Light
Bulb

R

R

R

Switches

Battery

R0

�
–

3. In the circuit shown in Fig. 3.13 what will happen when the switches are

opened? Why?

R0

Bulb

Light

R R

SwitchesBattery
�
–
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4. In the circuit shown in Fig. 3.14 pick R1, R2, R3 and Ro so that the light

does not turn on.

Battery 
6 V

Battery 
9 V

R3R0

R2

Light
Bulb

R1
�
––

�

5. In the circuit below the components A, B, and C, have the following

current–voltage relationships.

VA = 3IA + 12

VB = 4IB

VC = 2IC

Find V.

+ V  

+
V

+

V

I

I
A

B

C
C

B

2mA CA V

+

o

B

6. In the circuit shown below find the voltage across the resistor labeled R.
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6 kΩ

3 kΩ

2 kΩ

9 V

R
4 kΩ

5 kΩ �
–

7. In the circuit shown below find V.

13 kΩ

3 kΩ

16 V
�

20 V

18 kΩ

12 kΩ

12 kΩ

18 kΩ

V

–

–
�

–
�

8. In the circuit shown below find the voltage Vo.

2 kΩ
2 kΩ

8 kΩ

4 kΩ
10 V5 V

2 V

2 kΩ

Vo

�

�

�
–

�
–�

–

9. In the circuit shown below find Io.
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10 V

10 Ω

12 Ω 8 Ω

6 Ω12 V

I0

�
�

�
�

10. In the circuit shown below find the voltage across the 2 � resistor. The

component labeled A has the voltage current relationship

VA = 10.5 + 7 IA

1 Ω

7 V

2 Ω

6 V

+

–

VA
A IA

�
–

�
–

11. In the following circuit find Vo.

Vo

2 kΩ

8 V

4 kΩ
3 kΩ

–

+

9 V �
–

�
–

12. In the following circuit find Vo, if Vs = 12 V.
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2 kΩ

4 kΩ

9 kΩ

6 kΩ

Vo

+

–

Vs
�
–

13. In the following circuit find Io.

10 Ω

6 Ω16 Ω

12 V

6 V

16 Ω
Io

�
–

�
–

14. In the following circuit find Io.

6 Ω

3 Ω

Io

6 Ω

6 Ω
18 V 12 V

6 V

�
–

�
–

� –

15. In the circuit shown below find Io.
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8 V

10 Ω

3 Ω 6 Ω

6 Ω12 V

I0
�
�

�
�

16. In the following circuit find Vo.

14 V

12 Ω

6 Ω7 V

3 Ω

vo

+

�

�
�

�
�

17. In the following circuit find Vo.

6 Ω

6 Ω9 V Vo

+

–

12 Ω

15 V

�
–

�
–
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18. In the following circuit find Io.

6 Ω

3 Ω
24 V

6 Ω

36 VIo�
–

�
–
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C H A P T E R 4

Capacitors

4.1 OVERVIEW
In this chapter we look at another component—the capacitor—and its use in a

very common application of electrical circuits. We will begin by introducing the

capacitor, then describe the concepts of frequency and filtering.

4.2 INTRODUCTION
The capacitor is made up of a nonconducting or dielectric material sandwiched

between two conductors. A conductor is a material in which the valence electrons

are loosely bound and therefore can be used to transport electric charge. Standard

conductors include copper and iron. An insulator is a material in which the va-

lence electrons are tightly bound and therefore do not transport charge. Standard

dielectric material includes air, paper, Mylar, mica, glass, or ceramics.

Consider the simple circuit shown in Fig. 4.1. The battery creates a potential

difference between its positive and negative terminals. If there was a connection

between these two terminals there would be a flow of current (remember we assume

that the current is a flow of positive charges). However, the presence of the capacitor

prevents a direct flow between the two terminals. Initially, there is a flow of positive

charge from the positive terminal of the battery. The charge collects on plate A of

the capacitor. The charge cannot flow through the dielectric. However, it can exert

a repelling force on the positive charge on the other conductor plate. The charge

repelled from plate B flows to the negative terminal of the battery and there is a

momentary flow of current in the circuit. After a while, there is an accumulation
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Plate A

Plate B }+
 V C

++++++++++++
Dielectric

Plates
Conducting

FIGURE 4.1: A capacitor.

of positive charge on plate A and an accumulation of negative charge on plate B.

This creates a potential difference, which tries to push the current flow in the

opposite direction. When the potential difference generated by the battery and the

potential difference generated by the capacitor plates are equal, no more current

flows through the circuit.

We can see that in the beginning of this process the voltage across the plates

of the capacitor is zero. Therefore we get a substantial amount of current flow.

As the voltage across the capacitor increases, this opposes the current flow until

when the voltage across the capacitor reaches its maximum value the current flow

is reduced to zero. Mathematically the voltage across a capacitor Vc and the current

through it Ic are related by a derivative operation

Ic = C
d Vc

dt
(4.1)

where C is the capacitance and is a measure of how much charge can be stored

on the plates for a given potential difference. This is the component rule for the

capacitor just like Ohm’s law is the component rule for resistors.

In part this equation says what we have already observed. That is, when the

voltage across the capacitor becomes constant the current through it is zero. (The

derivative of a constant is zero.) However, it also says something very important

that we may have missed in our previous observations: in order for the voltage to

change instantaneously, we need an infinite amount of current to flow through

the capacitor. This is because an instantaneous change in V (t) would mean that

the slope of at that point, or the derivative, V (t) is infinite. Because this is not
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feasible in practice, the voltage across a capacitor cannot change instantaneously.

This gives the circuit a connection with its immediate past. In other words the

circuit “remembers” what the voltage was in the immediate past. If we see a circuit

containing only resistors and the voltage across a particular resistor is 5 V, this tells

us nothing about what the voltage was an instant ago. However, if the voltage across

a capacitor is 5 V we know that right before our observation the voltage across it

was about 5 V and right after our observation the voltage will be about 5 V. If we

did try to force a sudden change in the voltage, for example, by shorting out the

terminals, we would get a large (and dangerous) surge in the current. Therefore, a

capacitor can be used as a memory element in a circuit.

The other observation we can make, based on this equation, is that the cur-

rent through the capacitor depends on how the voltage varies with time. If the

voltage varies rapidly we get a large current flow, and if it varies slowly (or not at all)

we get a small (or no) current flow. How fast or how slow a signal varies with time

can be expressed in terms of frequency. The behavior of the capacitor is frequency

dependent. We can view the capacitor as a resistor whose resistance changes de-

pending on how fast the voltage across it changes. If the voltage changes rapidly,

the capacitor acts like a resistor with very low resistance resulting in a high value

for the current through it. If the voltage changes slowly, the capacitor acts as a re-

sistor with very high resistance. If the voltage is constant (after an initial transient),

the capacitor acts as an open circuit with no current through it.

The concept of frequency is very important in the study of electrical engi-

neering, as well as many other fields, and so we will take a brief detour to examine

it a bit more closely.

4.3 FUNCTIONS OF TIME AND THE CONCEPT
OF FREQUENCY

We often design circuits to handle signals that change with time. These signals come

in all shapes and sizes. We can have signals that vary in a very regular fashion, such

as the voltage on a power line, or in a very irregular fashion, as in the case of voice
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f(t)

t
To

FIGURE 4.2: A function of time.

signals over telephone lines or the atmosphere. We would like to have a framework

in which to represent all these signals. In the early part of the nineteenth century, in

order to solve equations describing the dissipation of heat, Jean B.J. Fourier came

up with such a framework. He showed that all periodic signals could be written in

terms of sines and cosines. Many signals that we are interested in, such as audio

and video signals, are not periodic. However, as these signals are nonzero only over

a finite period of time, we can convert them into a periodic signal by repeating the

signal. For example, consider the signal f (t) shown in Fig. 4.2. By repeating it as

shown in Fig. 4.3 we can generate a periodic signal that is identical to the original

signal in the interval [0, To]. Thus the method of Fourier allows us to represent a

variety of signals in a unified manner.

A sinusoidal signal is a signal of the form

V (t) = A cos(2π f t + θ ) (4.2)

where f is the frequency of the sinusoid and θ is the phase. The frequency of

a sinusoid is measured in cycles per second or Hertz1 (Hz). A frequency of n Hz

means that it takes 1 s for the sinusoid to complete n cycles. One cycle of the sinusoid

V (t) = 10 cos(2π × 10t) is shown in Fig. 4.4. The amount of time taken by the

sinusoid to complete one cycle is called the period of the sinusoid, and is usually

denoted by T. We can see that the period is simply the reciprocal of the frequency:

T = 1/ f

1 Heinrich Rudolf Hertz was born on February 22, 1857, in Hamburg, Germany, and studied en-
gineering and physics at Munich and Berlin. While he was a professor at the technical school in
Karlsruhe, he conducted a set of experiments showing the propagation of electromagnetic waves
(he called them electric rays). He was not yet 37 years old when he died on January 1, 1894.
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TO

p

t2TO 3TO

f (t)

FIGURE 4.3: A periodic extension of f (t).

One way of physically interpreting frequency is to view it as a measure of how fast

the signal changes. A frequency of 2 Hz means that it takes the sinusoid half a

second to complete one cycle; a frequency of 1000 Hz means that completing a

cycle takes only one thousandth of a second.

Fourier showed that any periodic signal f (t) with period To can be written as

f (t) = a0 +
∞∑

n=1

an cos(2πnf ot) +
∞∑

n=1

bn sin(2πn fot) (4.3)

where an and bn are called the Fourier coefficients and correspond to the com-

ponents of f (t) that change with frequency n fo. For signals that change slowly

the coefficients an and bn will be close to zero for larger values of n. Such signals

�10

�8

�6

�4

�2

0

2

4

6

8

10

0 0.02 0.04 0.06 0.08 0.1

v(
t)

t

FIGURE 4.4: One cycle of sinusoid with frequency 10 Hz.
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FIGURE 4.5: A periodic function.

are called low-frequency signals. The electrical signal that powers your house is

a sinusoid at 60 Hz. The human voice contains frequency components of up to

10,000 Hz. However, most of the information is contained in the lower frequency

components. This fact is made use of by the telephone system. Speech sent over

the telephone contains only components of voice up to 3600 Hz.

Example 4.3.1: We have said that any periodic function can be written as a sum of

sinusoids. This is a rather powerful statement, as periodic functions can come in

all kinds of shapes and sizes. For example, consider the periodic function shown in

Figure 4.5. This certainly does not look like a sinusoid. However, we can write this

as a sum of sinusoids. It actually takes lots of sinusoids to add up to this particular

function. However, we can see the trend by just adding up a few sinusoids. For

example, Fig. 4.6 is a plot of the following sum

f (t) = 1.75 − 1.2 cos(0.5πt) − .81 sin(0.5πt) − 0.2 cos(πt)

− .12 cos(1.5πt) − .09 sin(1.5πt)

superimposed on the plot of Fig. 4.5.
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FIGURE 4.6: A sum of sinusoids.

In later courses you will learn how to decompose a signal into its frequency

components. This brief introduction was just to get you thinking about the fact

that there is more than one way of looking at a function.

4.4 CIRCUITS WITH RESISTORS
AND CAPACITORS

Let us build a simple circuit with a voltage source, a resistor, and a capacitor. A possi-

ble setup is shown in Fig. 4.7. Given what we have described about the functioning

–
+ Cvs (t)

a

b c

+

–

v(t)

R

FIGURE 4.7: A simple RC circuit.
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of the capacitor, we would initially expect current to flow, which is limited by

the resistor. As the capacitor charges up, the potential difference between points

and c decreases as does the current, until finally the potential at node c is equal

to the potential at node d and no more current will flow through the circuit. The

time period over which this happens is usually very short, and is known as the

transient period. In many situations the transient period is too short to be of much

importance, and we are more concerned with what happens over a longer period of

time. This longer term response of the circuit is called the steady-state response. In

terms of the steady-state response the capacitor shown in Fig. 4.7 blocks the flow

of current, therefore, a capacitor in this position is often called a blocking capacitor.

Rather than guessing at the behavior of the circuit based on our qualitative

description of the capacitor, we can get a more precise mathematical description

using the rules we have been using. Just as we did in the case of resistive circuits, we

can obtain all the voltages and currents in the system by writing the current law at

each node whose voltage we do not know. Let’s pick node a to be our reference node.

At node b: Vba = Vs(t)

At node c: Ibc = Ica

Iba is the current through a resistor and Ica is the current through the capacitor.

Therefore, in order to write the current through these components in terms of the

voltage across the components we need to use the corresponding component rule:

Ohm’s law for the resistor and Eq. (4.1) for the capacitor.

Vbc

R
= C

d
dt

Vca

Writing Vbc in terms of the node voltages

Vba − Vca

R
= C

d
dt

Vca

From Fig. 4.7, Vba = Vs(t) and Vca = V (t). Therefore,

Vs(t) − V (t)
R

= C
d
dt

Vs(t)
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Simplifying this we obtain

d V (t)
dt

+ 1
RC

V (t) = Vs(t)

What we have obtained is a differential equation. Many of you may not have studied

differential equations yet. But you will, and at least some of you (I hope many) will

find it a fascinating topic. Differential equations provide us with a compact way of

describing the behavior, or modeling, of physical systems. Unfortunately, the study

of differential equations is beyond the scope of this book. So, instead of trying

to solve differential equations we will use two approximations to the behavior of

capacitors. When Vs(t) is a constant, we will assume that in steady state the capacitor

is an open circuit. When Vs(t) is a high-frequency signal, we will assume that in

steady state the capacitor is a short circuit. In other words the resistance of the

capacitor goes from infinity at zero frequency to zero at high frequencies. Thus the

capacitor behaves as a frequency-dependent resistor.

Given these approximations let’s find the voltage V (t) in the circuit of Fig. 4.7

for the two cases:

1. When Vs(t) is a constant

Vs(t) = V

according to our approximation our circuit looks as shown in Fig. 4.8. Using

the voltage law

V (t) = Vca = Vcb + Vba

–
+

1 kΩ

vs (t)

a

b c

+

–

v(t)

FIGURE 4.8: The open circuit approximation.
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–
+

1 kΩ

a

b c

+

–

vs(t ) v(t )

FIGURE 4.9: The short circuit approximation.

As there is no current flowing through the resistor Vcb = 0 and V (t) =
Vba = V .

2. When Vs(t) is a high-frequency signal, the capacitor acts as a short circuit

as shown in Fig. 4.9. In this case V (t) is zero.

We can use this property of the capacitor to block low-frequency signals from

a circuit as shown in Fig. 4.10(a), or as a shunt to divert high-frequency signals

from a circuit as shown in Fig. 4.10(b).

The capacitor blocks current flow when the voltage across it is constant and

acts as a short circuit when the voltage across it is changing rapidly. Another way of

looking at this is to view the capacitor as a resistor whose resistance value changes

with frequency. Thus the capacitor is like a resistor with a high-resistance value

when the voltage across it changes slowly and a resistor with a low-resistance value

when the voltage across it changes rapidly. This change in resistance is a continuous

progression: as we change the rate of change of the voltage, or the frequency of

(a) (b)

FIGURE 4.10: (a) The capacitor blocks constant signals (signals with zero frequency)

from the rest of the circuit. (b) The capacitor prevents high-frequency signals from getting

to the circuit.
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the voltage signal, the “resistance” of the capacitor decreases. We make use of this

frequency dependent resistance property of the capacitor to build filters. Filters

selectively let through or attenuate signals depending on their frequency. Filters are

part of all communication devices including radios, televisions, and cell phones. If

you have an audio system it probably has an equalizer. This is just a bank of filters

that amplifies or attenuates specific frequency components of the audio signal.

When a filter blocks out or attenuates all signals with frequencies above a cut-

off frequency, and lets through signals with frequencies below the cutoff frequency,

it is called a low-pass filter. You might use a filter like this to block out hissing noise

from a voice signal. Human voice does not have many components above around

7000 Hz, while hissing noise has many components above that value. So a low-pass

filter with a cutoff at 7000 Hz would do much to rid the voice signal of hiss.

A filter that blocks out or attenuates signals with frequencies below a cutoff

frequency while letting through signals with frequencies above a cutoff frequency

is called a high-pass filter. You might use such a filter to remove the 60 Hz hum due

to the electrical wiring that might intrude on a voice signal. Again, human voice

has almost no components at frequencies that low so signals at that frequency can

be blocked out without losing any voice information.

Finally, we can design filters that let through or attenuate a band of frequen-

cies. These are called band pass filters or band stop filters.

In order to see what is meant by “letting a signal through” or “blocking a

signal” let’s analyze a couple of simple filters. Consider the circuit shown in Fig. 4.11

v (t)

+
R  

Cv (t)i o

a b

c

+
–

FIGURE 4.11: Low pass filter.
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where Vi(t) is the input voltage and Vo(t) is the output voltage. When Vi(t) is

constant (zero frequency) the capacitor acts as an open circuit and there is no

current through the resistor. Therefore,

Vo(t) = Vbc = Vba + Vac

The voltage Vba is the voltage across the resistor and Vac is the input voltage. If the

current through the resistor is zero the voltage across it is also zero. Therefore,

Vo(t) = Vi(t)

the input is passed through to the output. At high frequencies we can approximate

the capacitor with a short circuit. Because the voltage across a short circuit is zero, the

output voltage Vo(t) is zero regardless of the input voltage. In other words the

input voltage cannot be perceived, or is blocked, from the output. This is a

rather crude analysis as we are only looking at the extreme conditions of zero

frequency and very high frequency. However, even with this we can see that this

circuit will let through the low-frequency signal and block the high-frequency

signals.

If we now swap the positions of the resistor and capacitor, as shown in

Fig. 4.12, we have a different filter. In this configuration, the output voltage is the

voltage across the resistor. At low frequencies the capacitor reduces or blocks the

current through the resistor. According to Ohm’s law this means the voltage across

the resistor will be low, or zero for the case where the current is completely blocked.

v (t)

+

v (t)i o

a b
C

R  

c

+
–

FIGURE 4.12: High pass filter.
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Thus the input voltage is not reflected at the output. When the frequency of the

input signal is high the capacitor acts as a short circuit and the voltage across the

resistor is the same as the input voltage. Thus the circuit lets through high-frequency

signals while blocking low-frequency signals. Therefore, in this configuration the

circuit is a high-pass filter.

4.5 SUMMARY
In this chapter we have introduced our second circuit component, the capacitor,

and its component rule, I = C(d V /dt). Unlike the resistor, the operation of the

capacitor is connected to how the voltage across it and the current through it

changes with time. The two circuit laws KVL and KCL along with the component

rules for the resistor and capacitor are sufficient to analyze any circuit made up of

these components. However, the equations we would have to solve are differential

equations. As most readers may not have learned how to use differential equations

at this stage we have not tried to analyze circuits of any complexity. Instead, we

have looked at two approximations that can be used for the cases where we have

slowly varying voltages and currents, and the cases where we have rapidly varying

voltages and currents.

4.6 PROJECTS AND PROBLEMS
1. In the circuit shown in Fig. 4.11 the input voltage Vi(t) is the square wave

shown in Fig. 4.13. Sketch the output voltage Vo(t).

v (t)i

FIGURE 4.13: Plot of input voltage Vi(t).
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2. In the following circuit the input voltage Vi(t) is the square wave shown in

Fig. 4.13. Sketch the output voltage Vo(t).

v (t)i

C

R  
v (t)o

+

+
–

3. Shown below is a plot of the voltage across a capacitor and a plot of the cor-

responding current through the capacitor. Which plot (the solid or dashed)

is a plot of the voltage and which is a plot of the current? Explain your

choices.

t

4. The following graph is either that of voltage across a capacitor or current

through a capacitor. Which one is it? Justify your answer.

t
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Diode Circuits

5.1 OVERVIEW
In this chapter we look at our first nonlinear component, the diode. We will look at

some popular applications of diodes and look at one way of analyzing circuits that

contain diodes.

5.2 INTRODUCTION
Both the resistor and the capacitor are linear elements. Suppose the current I

through a component and the voltage V across it are related as

I = g (V )

A linear component will have the following two properties.

1. Homogeneity: If we have two voltages V1 and V2 that correspond to cur-

rents I1 = g (V1), and I2 = g (V2), then the current corresponding to the

sum of two voltages is simply the sum of the two currents. In other words

g (V1 + V2) = I1 + I2

2. Scaling: If we scale the voltage by a factor α the current is also scaled by

the same factor.

g (αV ) = αg (V ) = α I
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i

v+ D

D

–

FIGURE 5.1: Symbol for diode.

Both the resistor and the capacitor have component rules that satisfy these

two properties. However, not all components have component rules that satisfy this

property. One of the most common nonlinear components is the diode. The diode

is represented by the symbol shown in Fig. 5.1.

The component rule for the diode, or the relationship between the current

through the diode, ID, and the voltage across it, VD, is rather complex. It is given

by

ID = Io(eαVD − 1) (5.1)

where α is a function of a number of things including the material used to construct

the diode and the temperature. An example of a graph of current versus voltage

(I–V curve) for a diode is shown in Fig. 5.2.

Because of this somewhat complex relationship between current and voltage,

circuits containing diodes may be more difficult to solve than circuits containing

resistors and capacitors. The Kirchhoff ’s laws can still be used to come up with

the requisite number of equations, but these equations will involve transcendental

expressions, which make them difficult to solve in the standard manner. Later

in this chapter we will introduce a graphical approach that can be used to solve

complex equations. However, what we usually do when we have diodes in a circuit

is approximate their behavior.

Two approximations to the I–V curve are shown in Fig. 5.3. Consider the

approximation shown in Fig. 5.3(b). According to this approximation as long as the

voltage across the diode is less than a threshold there is no current flowing through
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FIGURE 5.2: Current–voltage characteristic for a diode.

the diode. The diode acts as an open circuit. However, as soon as the voltage across

the diode reaches the threshold, the diode acts as a short circuit. The threshold

shown in the figure is about 0.7 V, which is common for a popular type of diode. As

indicated by the symbol for the diode shown in Fig. 5.1, the diode allows current

flow only in the direction of the arrow. The current can flow only after the voltage

0.25
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0.75

1.00

1.25

2.5 3.0 3.5

i

v0.5 1.0 1.5 2.0

(a)

0.25
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i

v0.5 1.0 1.5 2.0

(b)

FIGURE 5.3: Approximations to the current–voltage characteristic for a diode.
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VD has exceeded a threshold, which depends on the material used to make the

diode. Based on this approximation, we can then view the diode as a one way valve

that is either open or closed depending on whether the voltage VD is greater than

or less than the threshold voltage. In keeping with this analogy, when the diode is

in the short circuit mode it is said to be on. When it is not conducting current it is

said to be off.

5.3 SOME COMMON DIODE APPLICATIONS
Before we examine how we can solve circuits containing diodes, let’s look at some

common applications.

5.3.1 Rectifier Circuits

Example 5.3.1: Consider the circuit shown in Fig. 5.4. Notice that we have labeled

the voltage source by a function of time. What we want to do is investigate what

happens to the voltage across the resistor VR when the voltage changes above and

below the threshold value of 0.7 V. In order to do so we use the sinusoidal signal

shown in Fig. 5.5. Fig. 5.5 tells us what the voltage would be when measured at

different times. For example, if we measured the voltage Vac at any time before

t = t0 the voltage would be less than 0.7 V. What does that mean for VR? Looking

at the circuit we can see that as long as the voltage across the diode is less than

0.7 V there will be no current flowing through the diode and, therefore, no current

Rv(t)

vDa b

c

+
–

FIGURE 5.4: A simple diode circuit.
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FIGURE 5.5: Input to the diode circuit.

flowing through the resistor. If the current through the resistor has a value of 0,

then, by Ohm’s law (V = IR), the voltage across the resistor or VR will also be 0.

We can see from the circuit that if the voltage difference generated by the voltage

source between nodes a and c is less than 0.7 V, then the voltage difference between

nodes a and b will also be less than 0.7 V. Therefore, for t < t0 the voltage across

the resistor VR is 0.

VR =
{

0 t < t0

? t > t0

Looking at Fig. 5.5 we see that the voltage is also less than 0.7 V for t > t1.

Using the same arguments as before the voltage across the resistor for t > t1 will

also be 0. Thus, our expression for VR becomes

VR =




0 t < t0

? t0 < t < t1

0 t > t1

To find what happens between t0 and t1 let’s use the Kirchhoff ’s voltage law.

From the voltage law we know that

Vac = Vab + Vbc

Noting that Vac = V (t) and Vbc = VR

VR = V (t) − Vab
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1
2
3
4

�1
�2
�3
�4

t0
t1

v(t)

t

FIGURE 5.6: Input and output of half-wave rectifier.

Looking at Fig. 5.3(b) we can see that for the diode to continue to conduct,

the voltage across it has to remain at the threshold. Therefore, for t between t0 and

t1, Vab = 0.7 V, and

VR =




0 t < t0

V (t) − 0.7 t0 < t < t1

0 t > t1

The circuit we have described above is called a rectifier. It allows us to take a

signal that has both positive and negative fluctuations and convert it to a signal that

never turns negative. Because it does so by only letting the positive signal appear at

the resistor and suppressing the negative signal it is called a half-wave rectifier. An

example of an input and output of a half-wave rectifier is shown in Fig. 5.6.

The full-wave rectifier not only lets the positive signal through but also

converts the negative signal into a positive signal. The circuit of a possible imple-

mentation of a full-wave rectifier (known as a bridge rectifier) is shown in Fig. 5.7.

When the magnitude of the voltage is less than the diode threshold it is easy to

verify that no current will flow through the resistor.

Let’s look at the cases where the magnitude of the voltage is greater than the

threshold. It is easiest to see how the full-wave rectifier works by treating the diode

as a one-way valve. When the voltage V (t) is positive, the current flows through the

diode between nodes a and b. Then it flows through the resistor from node b to node

c, and then through the diode between nodes c and d to complete the circuit. The
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FIGURE 5.7: A full-wave rectifier.

v(t)

a

bc

d

R VR

+

–

+
–

FIGURE 5.8: The path of the current through the full-wave rectifier during the positive

cycle of the voltage V (t).

v(t)

a

c b

d

R VR

+

–

–
+

FIGURE 5.9: The path of the current through the full-wave rectifier during the negative

cycle of the voltage V (t).
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1
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4

�1
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�3
�4

�4
�3
�2
�1

1
2
3
4

v(t)

FIGURE 5.10: Input and output of a full-wave rectifier.

path of the current in the positive cycle is shown in Fig. 5.8. When the voltage is

negative, the current flows through the diode between nodes d and b, then through

the resistor from node b to node c, and finally through the diode between nodes

c and a as shown in Fig. 5.9. Notice that regardless of the polarity of the voltage

source, the current through the resistor is always in the same direction. Therefore,

given the assigned polarity the voltage across the resistor VR is always positive. An

example of an input and output for a full-wave rectifier is shown in Fig. 5.10.

5.3.2 Diode Clamp
Another application of the diode is as a safety valve when we have components

that should not be subjected to high voltages. Circuits that perform this function

are called clamps. An example of such a circuit is shown in Fig. 5.11. In this circuit

whenever the voltage becomes more than +0.7 V the diode diverts additional

current from the component and keeping the voltage stabilized. To see this, note

that Vac the voltage drop across the component is equal to the sum of the voltage

drop Vab across the diode and Vbc across the voltage source:

Vac = Vab + Vbc

The voltage across the diode can be at most 0.7 V and the voltage at the

source is Vo. Therefore,

Vac ≤ 0.7 + Vo
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FIGURE 5.11: A diode clamp.

5.3.3 Voltage Limiter
This clamping property of the diode can also be used to limit the peak-to-peak

swing of a voltage signal. A circuit that does that is called a limiter. The circuit

diagram of a limiter is shown in Fig. 5.12. If the input voltage goes above 0.7 V

or below −0.7 V one or the other of the diodes will begin to conduct and hold the

voltage at ±0.7 V. Think about how this circuit could be used to generate a square

wave.

5.4 SOLVING CIRCUITS CONTAINING DIODES
We have been looking at circuits where it is reasonably obvious when the diode is

on or off. What do we do when we are not that sure about the condition of the

diode? One approach that is relatively simple is to initially assume that the diode

is on. This means that we assume that the voltage across the diode is 0.7 V and

the current flows in the appropriate direction. We then solve the circuit using the

approach we used previously. Then we check to see whether our assumption was

Input Output

FIGURE 5.12: A limiting circuit.
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correct by checking the sign on the current through the diode. If the sign is negative

then our original assumption was incorrect and the diode is actually off. In this case

we replace the diode with an open circuit and solve the circuit again. We could also

use the opposite assumption, i.e., assuming the diode is off and then checking to

see if the assumption was valid. Assuming the diode is on means

• assuming the voltage across the diode is equal to the threshold voltage (0.7 V

in our case);

• checking the assumption by looking at the sign of the current through the

diode. A positive current means that the assumption was correct and a

negative sign on the current means that our assumption was incorrect.

Assuming the diode is off means

• replacing the diode with an open circuit;

• checking the assumption by calculating the voltage across the open circuit.

If the voltage is less than the threshold voltage the assumption was correct

and if the voltage is greater than the threshold voltage the assumption was

incorrect.

We can see how this works through an example.

Example 5.4.1: Consider the circuit shown in Fig. 5.13, where we are asked to find

the current Io. Let’s assume that the diode is on. This means that

Vbc = 0.7 V

We have marked the nodes on the circuit diagram. Let’s select node e to be

the reference node. Then we proceed to each node:

Node a: Vae = 6 V

Node b: At node b we write the current law

Iab = Ibe + Ibc (5.2)
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6 Ω 10 Ω

2 Ω6 Ω6 V
12 V

a

e

b c d

–
+

–
+ Io

FIGURE 5.13: A circuit containing a diode.

Node c: Writing the current law at node c we obtain

Ibc = Ice + Icd (5.3)

Node d: Vde = 12 V

Writing the currents in terms of the voltages in the two equations found by

writing the current law at nodes b and c we obtain

Vab

6
= Vbe

6
+ Ibc (5.4)

Ibc = Vce

2
+ Vcd

10
(5.5)

Combining the two equations we get

Vab

6
= Vbe

6
+ Vce

2
+ Vcd

10
(5.6)

Now we write the voltages in terms of the voltages at each node with respect

to the reference node.

6 − Vbe

6
= Vbe

6
+ Vce

2
+ Vce − 12

10
(5.7)

We have one equation and two unknowns. Now assume that the diode is on.

Vbe − Vce = 0.7 V



P1: IML
MOBK001-05 Morgan & Claypool Morgan-v3.cls September 29, 2005 7:31

78 UNDERSTANDING CIRCUITS

or

Vbe = Vce + 0.7

Substituting this in Eq. (5.7) we can solve for Vce as

Vce = 2.107 V

Knowing Vce we can easily calculate Io to be 1.053 A.

Now we go back and check if our assumption was correct.

Iab = Ice + Icd (5.8)

= Vce

2
+ Vce − 12

10
(5.9)

= 1.053 − 0.989 (5.10)

= 0.064 (5.11)

which is positive. This validates our assumption.

Try repeating this example replacing the 10 � resistor with a 4 � resistor.

Assuming a diode is on means

• assuming the voltage across the diode is 0.7 V;

• checking the assumption by looking at the sign of the current. A positive

sign indicates our assumption was true and a negative sign means our

assumption was false.

Assuming the diode is off means

• replacing the diode with an open circuit;

• checking the assumption by calaculating the voltage across the open circuit.

If the voltage is less than the threshold voltage the assumption is true.

Otherwise the assumption is false.
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In our analysis we admit only two possibilities: Either the diode is on or the

diode is off.

What if we have more than one diode in the circuit? All that does is increase

the number of possibilities. If we have two diodes in the circuit we will have four

possibilities: both diodes on, both diodes off, first diode on and second diode

off, and first diode off and second diode on. If we have n diodes in the circuit

we will have 2n possibilities. Solving such a circuit will be much more tedious;

however, the technique remains the same: assume one possibility, solve the circuit,

and check your assumption. If the assumption is not satisfied pick a different

possibility.

5.5 SOLVING CIRCUITS USING LOAD LINES
In our solution of circuits containing diodes we have used an approximation to

the diode I–V characteristic. That is, we assume that the diode is either on or off.

In general, this is a reasonable approach. However, there may be situations where

the approximation is not acceptable. In such a situation we can use a graphical

approach.

A equation containing two unknowns defines a line. For example, the equa-

tion

6x − 2y = 10

corresponds to a line with a slope of 3 and a y intercept of −5. By this we mean that

all points on such a line will satisfy this equation. Let’s suppose we have another

equation

2x + y = 10

All points on the line with a slope of −2 and a y intercept of 10 satisfy this

equation. We have two (independent) equations and two unknowns, and hence

we can find a unique solution to these equations. The solution has to satisfy both

equations. Therefore, the point represented by the solution is a point on both lines.
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6x
 �

 2
y 

= 
10

2x �
 y = 10

x

y

4

3

FIGURE 5.14: Graphical solution of two linear equations.

In other words, the solution is the point at the intersection of the two lines as

shown in Fig. 5.14. This method of graphical solution is referred to as the load-line

approach in electrical engineering.

In this particular case it would have been much simpler to have solved the

equations algebraically rather than use the graphical method. However, when we

start getting nonlinear terms in our equations, or when some information is only

available in graphical form, the graphical solution method can be very handy.

Let’s look at the following example.

Example 5.5.1: Consider the circuit shown in Figure 5.15. The relationship be-

tween the current through A and the voltage across A is given graphically in

Figure 5.16. Following previous methods we would write the current law at

node a.

Iba = Iac

From the circuit we can write an expression for Iba

Iba = 10 − V
10
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A

10 V

10 Ω
v

+

–

ii
a

b

c

+
–

FIGURE 5.15: Circuit with nonlinear component.

If we could get an expression for Iac in terms of V we could equate the two

expressions and solve for V , which we can then use to find the various currents and

voltages. Given that instead of an expression for Iba we have a graph, how about

expressing the relationship between Iba and V graphically? Plotting this relationship

we obtain the graph shown in Fig. 5.17. The graph shows the possible values for

Iba and V . The graph in Fig. 5.16 shows the possible pairs of values for Iac and V

when we consider the component A. What we need to do is find the value of V

for which Iba = Iac. We can do that by finding the point at which the two graphs

intersect. In order to do that we plot both of them on the same graph as shown in

0.25

0.50

0.75

1.00

1.25

2 4 6 8 10 12 14

i

v

FIGURE 5.16: Nonlinear component rule.
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0.75

1.00

1.25

2 4 6 8 10 12 14

i

v

FIGURE 5.17: Load line.

Fig. 5.18. The point at which the two graphs intersect gives us the value of V and

the values of Iba and Iac.

Let’s repeat Example 5.3.1 using this graphical approach.

Example 5.5.2: Following the same reasoning as in Example 5.3.1 we obtain VR as

VR =




0 t < t0

? t0 < t < t1

0 t > t1

0.25

0.50

0.75

1.00

1.25

2 4 6 8 10 12 14

i

v

FIGURE 5.18: Graphical solution.
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To find what happens between t0 and t1 this time let’s use the load-line

approach to find out what happens to VD when V (t) is greater than 0.7 V. We will

use the ideal diode characteristics for expressing the relationship between Iab and

Vab and use the current law at node b, which gives us

Iab = Ibc

Now all we need to do is find the relationship between Ibc and Vab. The

current Ibc is given by Ohm’s law as

Ibc = Vbc

R

In order to write Vbc in terms of Vab we can use c as the reference node and we

get

Vab = Vac − Vbc

or

Vbc = Vac − Vab

which gives us

Ibc = Vac − Vab

R

Substituting Vac = V (t) we obtain the equation

Ibc = − 1
R

Vab + V (t)
R

Note that the “constant” term in this equation is a function of time and

depends on the (unknown) value of R. But the value of R (as long as it is finite

and nonzero) does not really matter. The only thing that matters about V (t) is
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i

0.5 1.0
v(t)

Iab

Ibc

Vab

v(t)
R

FIGURE 5.19: Graphical solution for ideal diode.

that it be greater than 0.7 V. We can see this from Fig. 5.19: as long as V (t) is

greater than 0.7 V the voltage across the diode will be 0.7 V. Therefore as Vbc =
Vac − Vab,

VR =




0 t < t0

V (t) − 0.7 t0 < t < t1

0 t > t1

Lets try to analyze a diode circuit with a less idealized diode characteris-

tic.

6 kΩ 3 kΩ

2 kΩ
6 kΩ6 V

4.5 V

a

c

b d e

+ vD �

iD

�
–

�
–

FIGURE 5.20: Diode circuit.
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3.0

4.0

5.0

6.0

1.0 2.0 3.0 4.0 5.0 6.0 VD

ID (mA)

(Volts)

1.0

FIGURE 5.21: Diode component rule.

Example 5.5.3: Consider the circuit shown in Fig. 5.20. Suppose the diode has a

characteristic shown in Fig. 5.21. We will find a relationship between the current

through the diode ID and the voltage across the diode VD.

Let’s write the current law at nodes b and d.

Iab = Ibc + ID ⇒ ID = Iab − Ibc

ID = Idc + Ide
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Writing the current through the resistors in terms of the voltages across the

resistors.

ID = Vab

6000
− Vbc

6000

= Vac − Vbc

6000
− Vbc

6000

= 12 − 2Vbc

6000

or

6000ID = 12 − 2Vbc (5.12)

We have ID in terms of Vbc but what we want is ID in terms of the diode

voltage VD. Using KVL we can write Vbc as

Vbc = VD + Vdc

Now we need to find Vdc in terms of ID and VD. We can do that by using

KCL at node d.

ID = Idc + Ide

= Vdc

2000
+ Vde

3000

= Vdc

2000
+ Vdc − Vec

3000

= 5Vdc − 9
6000

From which we can obtain an expression for Vdc

Vdc = 6000ID + 9
5

Substituting this in Eq. (5.12) we get

6000ID = 12 − 2VD − 2

(
6000ID + 9

5

)
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4.0
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6.0

1.0 2.0 3.0 4.0 5.0 6.0 VD

ID (mA)

(Volts)

1.0

FIGURE 5.22:

Simplifying and writing ID in units of milliamperes

ID = 1 − 5
21

VD

Drawing this line on the diode characteristics shown in Fig. 5.21, we obtain

Fig. 5.22. We can see that the two curves intersect at ID = 0.8 mA and VD =
1 V.

In this example it took a little bit of manipulation to get the equation relating

the current through the diode with the voltage across the diode. It is easy to see
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situations where the amount of manipulation required may be much more than a

little bit. We can avoid this latter situation by realizing that if we wish to draw a

line all we need are two points on the line. The two points that are easiest to find

are the x-axis and y-axis intercepts. The x-axis intercept is the point where the

current through the diode is 0 and the y-axis intercept is where the voltage across

the diode is 0. The situation where the current through the diode is 0 is equivalent

to the condition when the diode is replaced by an open circuit. The situation where

the voltage across the diode is 0 is equivalent to the condition that the diode has

been replaced with a short circuit.

Therefore, the procedure for finding the intercepts is as follows:

1. Replace the diode with an open circuit and compute the voltage across this

open circuit. This is the x-intercept value.

2. Replace the diode with a short circuit and compute the current through

the short circuit. This is the y-intercept value.

Let’s repeat the previous example using this procedure.

Example 5.5.4: First we replace the diode with an open circuit to obtain the circuit

shown in Fig. 5.23. Clearly ID is zero in this case and VD = Vbd. Writing Vbd with

reference to node c

VD = Vbc − Vdc

6 kΩ 3 kΩ

2 kΩ
6 kΩ6 V

4.5 V

a

c

b d e

+ vD �

iD

+_
+_

FIGURE 5.23: Circuit to find the x-axis intercept.
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6 kΩ 3 kΩ

2 kΩ
6 kΩ6 V

4.5 V

a

c

b d e

+ vD �

iD

+
–

+
–

FIGURE 5.24: Circuit for finding the y-axis intercept.

Now writing KCL at nodes b and d we get Vbc = 6 V and Vdc = 1.8 V, which

results in VD = 6 − 1.8 = 4.2 V. So the first point on our line is ID = 0, VD = 4.2.

To get the second point on the line we replace the diode with a short circuit. This

gives us the circuit shown in Fig. 5.24. The voltage VD is clearly 0 and ID is the

current flowing through the short circuit. To get this current we can write two

KCL equations at nodes b and d and then use the fact of the short circuit. First, at

node b:

ID = Iab − Ibc

= Vab

6000
− Vbc

6000

= Vac − Vbc

6000
− Vbc

6000

= 12 − 2Vbc

6000
(5.13)

Then at node d:

ID = Idc + Ide

= Vdc

2000
+ Vde

3000

= 3Vdc

6000
+ 2(Vdc − Vec)

6000

= 5Vbc − 9
6000



P1: IML
MOBK001-05 Morgan & Claypool Morgan-v3.cls September 29, 2005 7:31

90 UNDERSTANDING CIRCUITS

where in the last equation we have made use of the fact that Vbc = Vdc. Now

equating the two expressions for ID.

12 − 2Vbc

6000
= 5Vbc − 9

6000

from which we get Vbc = 21/7. Substituting this value of Vbc into Eq. (5.13) we

obtain ID = 1 mA. Therefore, the second point on our line is ID = 1 mA, VD = 0.

This is the same line that we obtained in the previous example.

Using the open circuit voltage and short circuit current to obtain two points,

on a line rather than obtaining an equation for the line, is a systematic way of solving

the same problem. In some cases it may be easily evident what the equation is for

the line. However, the open circuit voltage/short circuit current approach is always

available to us as an alternative.

5.6 SUMMARY
In this chapter we have introduced our first nonlinear component, the diode. We

have shown a number of ways the diode is used. Circuits containing diodes can

be treated in two ways depending on how we approximate the voltage–current

relationship, or the component rule, for the diode. If we treat it as an on–off switch,

we make an assumption as to the state it is in: on or off. Based on our assumption we

solve the circuit and then check whether our assumption was correct. Whether the

assumption turns out to be correct or incorrect at the end of this process, we know

the state of the diode switch. The other approach to analyzing circuits containing

diodes is used when the current–voltage relationship for the diode is given to us in

the form of a graph. In such cases, we construct a load line whose intersection with

the graph for the diode gives us the values of the voltage across the diode and the

current through it. There are two ways of obtaining the load line: we can obtain

the equation for the line or we can find two points on the line, which can be used

to construct the line.
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5.7 PROJECTS AND PROBLEMS
1. In the following circuit find VR when

• Vi = 1.8 V.

• Vi = 0.4 V.

• Vi = −1.8 V.

• Vi = −0.4 V.

Assume an ideal diode with a threshold voltage of 0.7 V.

+
–

v

R VR

+

–

i

2. In the circuits shown below what is the value of Vout if (i) Vin = 15 V and

(ii) Vin = −5 V? Assume VT = 0.7 V.

+

_

+

_

2.2 kΩ

5 V

2 V

+

_

+

_

10 kΩ

(a) (b)

+
–

+–

in inout
out

V V V V

3. Find Io in the circuit shown below.

6 Ω 4 Ω

2 Ω6 Ω6 V
12 V+

–
+
–

Io



P1: IML
MOBK001-05 Morgan & Claypool Morgan-v3.cls September 29, 2005 7:31

92 UNDERSTANDING CIRCUITS

4. Find Io in the circuit shown below.

6 Ω 4 Ω

6 V
12 V6 Ω 2 Ω +

–
+
–

Io

5. In the following circuit find Io. Assume an ideal diode with a threshold

voltage of 0.7 V. Justify all assumptions.

24 kΩ 6 kΩ

12 kΩ

6 V12 V
+
–

+
–

oI

6. In the circuit below find Vo. Assume VT = 0.7 V.

o5 kΩ

5 kΩ 8 kΩ

2 kΩ

_+10 V

V

7. In the following circuit find Vo. Use the I–V characteristic for the diode

shown.
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9 V6 V

3 kΩ6 kΩ

+ _

+
–

+
–

oV

1.0

2.0

3.0

4.0

5.0

6.0

1.0 2.0 3.0 4.0 5.0 6.0 VD

ID (mA)

(Volts)
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8. In the following circuit find Io. Use the I–V characteristic for the diode

shown.

6 Ω

3 Ω6 Ω24 V
+
–

Io

0.5

1.0

1.5

2.0

2.5

3.0

5 10 15 20 25 30 V

ID

D
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C H A P T E R 6

Transistors

6.1 OVERVIEW
In this chapter we look at a component that revolutionized circuit design, the

transistor. Understanding the transistor in all its glory is beyond the scope of this

book; however, we can get some idea of its operation using the information we

already have. We will analyze simple circuits with transistors and look at a few

applications.

6.2 INTRODUCTION
The fact that the diode acts as a one-way valve permits us to do a number of

interesting things. However, often what we need is not a valve but a tap that will

control and amplify the flow of current. Modulating the flow of current through

a component also lets us control the change of voltage across the component. We

had earlier mentioned how a radio grabs sound transmissions from the air. The

sound transmission is represented in the form of voltage fluctuations. However,

these voltage fluctuations are so weak that we cannot use them to directly power a

speaker. What we need is some method of amplifying these fluctuations.

When we turn on a tap, by expending a small amount of energy we can

control the generation of a lot of force. The amount of force generated depends on

the water pressure available, which is usually due to water being raised to a tank. The

process of raising the water to the tank results in the storage of energy. Turning the

tap does not require a lot of energy but it controls the large amount of energy stored

in the tank. If the water pressure is high, a relatively frail individual can control a



P1: IML/FFX P2: IML/FFX QC: IML/FFX T1: IML

MOBK001-06 Morgan & Claypool Morgan-v3.cls September 29, 2005 7:31

96 UNDERSTANDING CIRCUITS

lot of power. In the case of the radio, the frail individual corresponds to the weak

signal in the atmosphere, and what we need is for this weak signal to control the

relatively large flow of current needed to drive a speaker. A component that permits

this kind of amplification is the transistor. As in the water analogy, the transistor

permits a weak signal to control the release of stored energy. The stored energy

is in the form of an external voltage source. The transistor requires the external

source to operate as a transistor. Thus, the transistor is called an active component,

as opposed to resistors and capacitors, which are called passive components.

6.3 THE COMPONENT RULE
There are several different kinds of transistors, and you will learn about them in

detail in more advanced courses. For now we will use one particular type of transistor

called a bipolar junction transistor (b jt). There are two kinds of bipolar junction

transistors. The kind we will look at is called an npn bipolar junction transistor

and has the symbol shown in Fig. 6.1. Notice that the transistor has three terminals.

They are called the base, the collector, and the emitter. The base of the transistor is

where you apply the weak signal. The base–emitter junction acts like a diode. You

need to increase the voltage Vbe beyond the diode threshold before you can get

any current to flow into the base. As in the previous chapter, we will assume that

the diode threshold is 0.7 V. The current in the collector arm of the transistor is

given by

Ic = βIb

Base

Collector

Emitter

c

e

b

FIGURE 6.1: A bipolar junction transistor.



P1: IML/FFX P2: IML/FFX QC: IML/FFX T1: IML

MOBK001-06 Morgan & Claypool Morgan-v3.cls September 29, 2005 7:31

TRANSISTORS 97

where β is a large number (typically about 100) as long as the voltage difference Vce is

greater than a threshold. This last point is very important because the base current Ib

is only controlling the current Ic not generating it. The current is being generated

by an external source and, if the the potential difference Vce is not positive (or

very small), this will block the flow of the current from the collector terminal to

the emitter terminal. When we have a situation where the voltage Vce is at its

lowest value, we say that the transistor is saturated. In this case, the maximum value

that Ic can take on is the current that will leave Vce barely above the threshold.

This threshold varies depending on the type of the transistor. A typical value is

about 0.3 V. To make life easier for ourselves, we will approximate the threshold

to be 0 V. Thus we will say the transistor is saturated if when Ic calculated using

Ic = β Ib would result in Vce ≤ 0. Therefore, the component rule for the b jt npn

transistor is

Ib = 0 when Vbe < 0.7 (6.1)

Ic = β Ib when Vce > 0 (6.2)

The value of β depends on a number of different factors and can vary quite

a bit. This can be a problem when designing circuits with specific characteristics.

There are a number of ways of dealing with this problem, which you will see when

you get a more detailed exposure to electronic circuits.

6.4 TRANSISTOR CIRCUITS
As in the case of circuits containing other components, our major tool for analyzing

circuits containing transistors will be the Kirchhoff ’s laws, along with the rules

relating the various currents in the transistor. Reiterating

1. The base current Ib will be zero if Vbe < 0.7 V.

2. Ic = β Ib whenever Vce > 0.
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Vout

50 kΩ

1 kΩ

10 V
a b
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b
in

I
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FIGURE 6.2: A common emitter amplifier.

If Ib = 0, this means the transistor is off. So, the first thing we do when analyzing

a transistor circuit is calculate Ib. If Ib is greater than 0 we proceed to the next

step, which is to calculate Ic = β Ib. We then check to see if Vce is greater than 0. If

it is, we are done with this part of the analysis. If not, we use the fact that Vce = 0

in the rest of our analysis.

To see how we use these rules, consider the following example.

Example 6.4.1: A simple transistor amplifier circuit is shown in Fig. 6.2. We wish

to calculate Vout for a given value of Vin. Let’s suppose for the moment that Vin is 5 V.

Can we calculate what the current into the base is going to be? From the figure we

can see that the current into the base is the same as the current through the 50 k�

resistor. We can use Ohm’s law to calculate the current through the resistor.

Iab = Vab

50 × 103
= Vae − Vbe

50 × 103

If there is any current flowing into the base, according to the component

rules for the transistor, Vbe = 0.7. The voltage Vae is the same as Vin, therefore,

Iab = 5 − 0.7
50 × 103

= 86 µA
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How did we know that there was current flowing into the base and therefore

Vbe = 0.7? We didn’t. We simply made an assumption. If our assumption had been

wrong, we would have obtained a negative value for Iab.

Assuming the transistor is not saturated the collector current Ic is given by

Ic = β Ib = 100 × 86 × 10−6 (6.3)

= 8.6 mA (6.4)

Now we must check if the transistor is saturated. If we have 8.6 mA flowing

through the 1 k� resistor, the voltage across that resistor, Vdc, is 8.6 V. Then,

Vout = Vce = Vde − Vdc = 10 − 8.6 = 1.4

Vce is positive, the transistor is not saturated, and our calculation of Ic is valid.

What would happen if we changed the resistor from 50 to 10 k�? In this

case the base current Iab becomes

Iab = 5 − 0.7
10 × 103

= 0.43 mA

If we now assume that the collector current is β times the base current with

β = 100 we obtain the current into the collector as

Idc = 100 × 0.43 mA = 43 mA

But this would mean that the voltage across the 1 k� resistor Vdc would be 43 V.

As Vde is 10 V this would mean Vce would have to be −33 V. For Vce to be

negative the potential at the collector is lower than the potential at the emitter.

This would be a violation of the requirements under which the collector current is

β times the base current. Therefore, Idc cannot be 43 mA.

In order to calculate the collector current, we use the fact that as the base

current increases, the collector current increases until Vce is 0. It cannot increase any

further. This means that the maximum value for Vdc in this case is 10 V. For the volt-

age across a 1 k� resistor to be 10 V the current, by Ohm’s law, Ic has to be 10 mA.
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We should be careful about applying the Ic = β Ib rule. It is valid as long as

it does not violate the requirements on transistor operations.

Notice that even though the transistor looks considerably more complicated

than the previous circuit components we have already looked at, analyzing a circuit

containing transistors requires the same approach that we have used previously. In

this last example we used Ohm’s law to find the base current and the component

rules for the transistor for the rest.

Let’s look at a more complicated circuit.

Example 6.4.2 Consider the circuit shown in Fig. 6.3. We need to compute the

output voltage Vout.

In order to use the component rules for transistors, we need to find the

current Ib into the base of the transistor. In the previous example, the base current

was the same as the current through a resistor; therefore, we used Ohm’s law to find

the current through the resistor and hence the base current. But now the situation

is not as convenient. Therefore, we fall back on our tried and true approach: using

the Kirchhoff ’s current law. Applying the current law to node b we get

Iab = Ib + Ibd (6.5)

12 V
b

e

a

d

c

40 kΩ

80 kΩ 2 kΩ

1 kΩ

β = 49

–

+ +
–

e

b

c

out

I

I

I

V

FIGURE 6.3: Another transistor amplifier.
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or

Ib = Iab − Ibd (6.6)

Assuming d to be the reference node, we can write the two currents on the

right in terms of the voltages using Ohm’s law.

Ib = Vab

80 k�
− Vbd

40 k�

We can write these voltages in terms of the reference node

Ib = Vad − Vbd

80 k�
− Vbd

40 k�

= 12 − Vbd

80 k�
− Vbd

40 k�
(6.7)

If we could now write Ib in terms of Vbd we would have an equation with a

single unknown. Let’s explore other ways of expressing Ib. Looking at Fig. 6.3 we

see that we can write another expression including Ib using the KCL. Notice that

Ic and Ib enter the transistor and Ie leaves the transistor. Therefore,

Ib + Ic = Ie

From the transistor component rules we know that if Vce is greater than zero,

Ic = β Ib. Therefore

Ie = (β + 1)Ib

(We will later check the assumption that Vce is greater than 0.) Ie is the current

through the 1 k� resistor, therefore

Ie = (β + 1)Ib = Ved

1 k�

or

Ib = Ved

(β + 1) × 1 k�
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We have an expression for Ib in terms of Ved. What we wanted was an

expression for Ib in terms of Vbd. Therefore, we need to write Ved in terms of Vbd.

Looking at Fig. 6.3 we can see that

Vbd = Vbe + Ved

If Ib is not zero, we know that Vbe is 0.7 V. Therefore,

Ved = Vbd − 0.7

and

Ib = Vbd − 0.7
(β + 1) × 1 k�

as β = 49, this means that

Ib = Vbd − 0.7
50 × 1 k�

(6.8)

Substituting this expression for Ib into Eq. (6.7) we obtain

Vbd − 0.7
50 × 1 k�

= 12 − Vbd

80 k�
− Vbd

40 k�
(6.9)

Solving for Vbd we obtain Vbd = 2.85 V. Substituting this value of Vbd in

Eq. (6.8) we obtain Ib = 0.043 mA.

Our goal was to find Vout. From Fig. 6.3

Vout = Vcd

we know that Vad is 12 V. We also know from the KVL that

Vad = Vac + Vcd

The voltage Vac is the voltage across the 2 k� resistor, which is equal to Ic ×
2 k�. Knowing that Ic = β Ib we can calculate Ic = 2.107 mA and Vac = 4.214 V.

Therefore,

Vout = 12 − 4.214 = 7.786 V
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Before we can declare this to be our answer, we need to check the assumption

that Vce is greater than 0. From Fig. 6.3

Vad = 12 = Vac + Vce + Ved

Therefore,

Vce = 12 − Vac − Ved = 12 − 4.214 − Ved

As,

Ved = Vbd − 0.7 = 2.85 − 0.7 = 2.15 V

Vce is 5.636 volts, which is greater than 0. Hence our assumption, and the answer

which relied on that assumption, is correct.

This example was more complicated than the one before it. However, no-

tice that all we needed to analyze the circuit were the Kirchhoff ’s laws and the

component rules. Our simple tools are again sufficient for the task.

Now that we have some idea about how to analyze simple transistor circuits,

let’s look at a few of the many transistor applications.

6.5 TRANSISTOR AMPLIFIERS
One of the most common uses of transistors are as amplifiers. In fact, the two

circuits we analyzed in the previous section are both examples of amplifiers. The

dictionary defines amplify as to render larger, more extended, or more intense. However,

looking at Example 6.4.1 the results seem to contradict our naming of the circuit

an amplifier. For an input of 5 V we got an output of 1.4 V; the magnitude of

the output is less than the magnitude of the input. So, how can we say that the

transistor is acting as an amplifier? The reason for this seeming contradiction is that

when we say the circuit acts as an amplifier, we mean that it amplifies fluctuations,

or changes, in the voltage at its input.
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4

6

2

8

10

1 2 3 4 5 6 Vin

Vout

FIGURE 6.4:

For this circuit let’s find Vout for different values of Vin and plot them as

shown in Fig. 6.4. We can see from the figure, that as the input changes between

0.7 and 5.7 V, the output changes between 10 and 0 V. Thus, a change of 5 V at

the input gets amplified to a change of 10 V at the output. This is a doubling of

the input fluctuation.

There are a few little problems though. From the figure and from the com-

putations, we can see that when the input voltage is low, the output voltage is high

and vice versa. This is not really a problem because we are often more interested in

the fluctuations of the voltages rather than the actual values. Also, there are simple

ways of reversing this effect. A more serious problem is that this amplifier will only

work when the input is positive. In fact, the transistor will only turn on when the

input is greater than 0.7 V. This means that if the input looks like the waveform

shown in Fig. 6.5(a), the output will look like the waveform shown in Fig. 6.5(b);

all values of the input that are less than 0.7 V have been clipped.

Because most signals that we wish to amplify, such as speech signals, actu-

ally fluctuate between positive and negative values, this is a serious problem. The

way we get around this problem is by biasing the transistor input. By biasing we

mean that we add a fixed amount of voltage to the signal we want to amplify so

that that the sum of the two voltages remains in the region in which we can get
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FIGURE 6.5: Clipping during amplification.

amplification. Consider the waveforms in Fig. 6.6. We start out with the same

waveform as in Fig. 6.5(a). We then add a constant bias that makes the most neg-

ative point of the waveform rise to 0.7 V. This signal is then applied to the input

of the transistor amplifier of Fig. 6.2. The bias is then removed from the amplified

signal.
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FIGURE 6.6: Biased amplifier.
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Vout

50 kΩ

1 kΩ

b

c

e

+
–

+
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in

bias

ccV

V

V

FIGURE 6.7: Transistor with amplifier.

We can represent the process of addition of bias as shown in Fig. 6.7.

Biasing a transistor is an important part of designing a transistor amplifier;

we will leave the details to later courses. For now let’s take look at an example of

a biased transistor amplifier. Consider the circuit shown in Fig. 6.8. Notice that

this is simply the circuit of Fig. 6.3 with an input terminal with a capacitor and a

capacitor at the output terminal. In this circuit when Vin is zero, the voltage Vbd

is 2.85 V, which is 2.15 V greater than the minimum value of 0.7 required. This

means that the input voltage can fall to −2.15 V without the output being clipped.

In terms of Fig. 6.6, the 80 k� resistor and the 40 k� resistors provide the addition

of the bias. The capacitor on the output terminal removes the bias.

12 V
b

e

β = 49

a

d

c

40 kΩ

80 kΩ 2 kΩ

1 kΩ

–

+

out

in

+

–

+
–

c

b

e
V I

I

I

V

FIGURE 6.8: A biased amplifier.
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β2 = 100
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2

1

I

I

Q

Q

FIGURE 6.9: A current amplifier.

Finally, the transistor amplifier can be used as a current amplifier with some

interesting (and simple to build) applications.

Example 6.5.1: Consider the circuit shown in Fig. 6.9. Let’s calculate the current

Io. We begin by calculating the current into base of the first transistor (Q1). This is

the current through the 76 M� resistor. In order to obtain the current Iab, we need

the voltage Vab. Picking node d as the reference node, we can write Vab in terms of

voltages with respect to the reference node.

Vab = Vad − Vbd

From the circuit we can see that Vad = 9 V. Also, if the two transistors are

on

Vbe = Ved = 0.7 V

then

Vbd = Vbe + Ved = 1.4 V.

Therefore,

Vab = 9 − 1.4 = 7.6 V
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and

Iab = Vab

76 × 106
= .1 µA

Noting that the current into the base of the second transistor is the emitter

current from the first transistor, we have

Ib2 = (1 + β1)Ib1 = 100 × 10−7 = .01 mA

Because the desired current Io is the collector current for the second transistor

Io = β2 Ib2 = 100 × 10−5 = 1 mA

Notice that the current at the base of the first transistor has been amplified

10,000-fold.

You can use this particular circuit in a number of interesting ways. Replace

the 1 k� resistor with an light emitting diode (LED) and then remove the 76 M�

resistor and you have the touch key shown in Fig. 6.10. When your finger completes

the circuit, a very minute amount of current will flow into the base of the first

transistor. The amplification provided by the two transistors is sufficient to generate

enough current to light up the LED. Try to build this circuit.

9 V

10 kΩ

5 kΩ

LED

+
–

FIGURE 6.10: A touch-sensitive circuit.
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6.6 TRANSISTOR LOGIC GATES
In the amplifier circuits we made use of the ‘tap-like’ characteristic of the transistor.

Another characteristic of the transistor that has proven highly useful is its switch-

like behavior. We can view the behavior of the circuit in Example 6.4.1 in a slightly

different manner than we have done previously. For input voltages below 0.7 V,

the transistor is in a state where the output has a large value. For input voltages

greater than 5.7 V, the transistor is in a different state where the output voltage is

zero. Thus, the transistor can be viewed as a voltage-controlled switch with two

states. The behavior of the transistor for input voltages between 0.7 and 5.7 V can

be viewed as a transition between the states.

This switch-like behavior can be used to build digital logic gates.

6.6.1 Inverter
One way you can use a transistor with some diodes is to implement an inverter or

a NOT gate. The implementation is shown in Fig. 6.11. In order for the transistor

to be turned on, we need to have 0.7 V across the base-emitter junction and 0.7 V

across each of the diodes. Therefore, until the input voltage reaches 2.1 V, the

transistor is turned off. If the transistor is turned off, there is no current through

the 1 k� resistor and the voltage across the resistor is zero. Therefore, for Vin less

than 2.1 V, Vout is 5 V. When the input voltage gets to be greater than 2.1 V, the

Vin

Vout

1 kΩ

5 V
b

c

e

10 kΩ +
–

FIGURE 6.11: A NOT gate.
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Vout

FIGURE 6.12: Input–output behavior of the NOT gate.

transistor turns on and Vout decreases. We can calculate that for Vin greater than

2.6 V Vout is 0. The behavior of this circuit is plotted in Fig. 6.12. Notice that the

transition region is quite small. When the input is low (voltage less than 2.1 V),

the output is high, and when the input is high (voltage greater than 2.6 V), the

output is low. This is a description of a NOT gate.

6.6.2 NOR Gate
A NOR gate is a universal gate. That is, we can use NOR gates to construct all

other digital gates. So, it is interesting to see how we can build a NOR gate using

a transistor. A possible design for a two input NOR gate is shown in Fig. 6.13.

+
_ 5 V

10 kΩ 10 kΩ

1 kΩ

+

_

+

_

+

_

C
BA

V
VV

FIGURE 6.13: A two input NOR gate.
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Assuming 5 V to be logic 1 and 0 V to be logic 0 we can build the truth table for

this circuit where the inputs are VA and VB, and the output is VC. If both inputs are

low, which in the case of this circuit means that the inputs have a value less than

0.7 volts both transistors will be off. If the transistors are off no current will flow

through the 1 k� resistor. Using KVL the output VC is equal to the 5 V minus the

drop across the 1 k� resistor. Therefore, VC = 5 V. If either of the transistors is

on there is a path for the current to flow through the 1 k� resistor. For β = 100

if either VA or VB is greater than 1.2 V that particular transistor enters saturation

mode and VC = 0 V. The truth table for this circuit is

VA VB VC

0 0 5

5 0 0

0 5 0

5 5 0

This is clearly the truth table for a NOR gate. The circuit provides some

wiggle room as well. The low value does not have to be exactly zero and the high

value can vary considerably from 5 V.

By combining diodes and transistors, or multiple transistors in different ways,

we can build all the different logic gates used to build digital circuits.

6.7 TRANSISTOR SWITCHES
The transistor allows us to use very low current values to control much larger

currents. Two such switches are shown in Figs. 6.14 and 6.15. In each case the

physical switch switches the base current, which is very low. Therefore, the switch

does not suffer from as much wear and tear as it would have to if the switch was

trying to handle the current through the equipment. The switch in Fig. 6.14 is

a normally-off switch, that is, there is no current flowing through the equipment



P1: IML/FFX P2: IML/FFX QC: IML/FFX T1: IML

MOBK001-06 Morgan & Claypool Morgan-v3.cls September 29, 2005 7:31

112 UNDERSTANDING CIRCUITS

10 kΩ

220 Ω

+_ 6 V
Equipment

FIGURE 6.14: A normally off switch.

when the switch is off. It resembles several of the other transistor circuits we have

looked at.

The switch in Fig. 6.15 is a bit different. This is a normally-on switch.

Before the switch is closed the transistor is off and there is no current flowing

into the collector. Instead all the current flows through the equipment. When the

switch is closed the transistor enters saturation and all the current flows into the

collector bypassing the equipment, thus turning off the flow of current to the equip-

ment.

10 kΩ

220 Ω

+
_ 6 V

Equipment

FIGURE 6.15: A normally on switch.
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6.8 SUMMARY
In this chapter we introduced the transistor, the most versatile and widely used

component in electronic circuits. We introduced the component rule for the bipolar

junction transistor and examined several applications of transistors.

6.9 PROBLEMS
1. In the circuit below find Ic and Vout for (a) Vin = 4 V and (b) Vin = 10 V.

Assume β = 100.

Vin

Vout

50 kΩ

1 kΩ

10 V
b

c

e

�

�

�

�

+
–

B

CI

I

2. For the circuit shown below find Ic and Vout for Vin = 2 V, 3 V, 4 V, 5 V,

6 V, 7 V, 8 V, 9 V, and 10 V. Present your answer in two ways: (a) Make

a table with columns for Vin, Ic, and Vout. (b) Plot Vout and Ic versus Vin.

Vin

Vout

50 kΩ

1 kΩ

10 V
b

c

e

�

�

�

�

β = 100

+
–

C

B
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3. In the following circuit find Ic and Vout. You can assume that the transistor

is not saturated (in other words you don’t have to show that it is not sat-

urated).

4 kΩ

12 V
b

c

e

+600 kΩ

12 V

β = 100

2 kΩ

–

Vout

+
–

+
–

cI

4. In the circuit shown below find IC, IB, IE, and Vout.

Vout

4 kΩ

12 V
b

c

e

+

–

80 kΩ

40 kΩ12 V

β = 100

3.3 kΩ

+
–

+
–

B

C

EI

I

I

5. In the following circuit find R1, R2, RE, and RC such that IE = 1 mA,

Ved = 3.3 V, Vbd = 4 V, and Vcd = 8 V.
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12 V
b

c

e

β = 100

R1

R2 RE

RC

1.25 mA

d

+
–

C

EI

I

6. For the circuit shown below find Vout for Vin = 1.6 V, 1.8 V, 2.0 V, 2.2 V,

2.4 V, 2.6 V, 2.8 V, and 3 V. Present your answer in two ways: (a) Make a

table with columns for Vin and Vout. (b) Plot Vout versus Vin.

Vout

1 kΩ

5 V
b

c

e

�

�

β = 100

Vin

�

�

10 kΩ +
–

B

C

I

I

7. In the following circuit the source A generates a current of 10 µA in the

presence of light. Pick resistors Rc and Re so that when light shines on A,

the voltage Vout is 5 V and Vce is 1 V.
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12 V
b

c

e

β = 100

Vout

�

�

A

Rc

Re

+
–

C

B

E

I

I

I

8. In the following circuit find Ic and Vout.

Vout

4 kΩ

12 V
b

c

e

β = 100

3.3 kΩ
40 kΩ

80 kΩ

+
–

E

B

C

�

�

I

I

I

9. In the circuit shown below find Ic and Vce.

10 V
b

c

e

β = 100

4 V
+
–

3.3 kΩ

4.7 kΩ

+
–

C

B

E

I

I

I
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10. In the following circuit find Vout.

Vout

1 kΩ

15 V

c

e

�

2 kΩ

100 kΩ

β = 100

�

+
–

11. In the circuit below find Ic and Vce.

76 MΩ

9 V

10 kΩ 1 kΩ

β1 = 99

β2 = 100

Io

d

b

c

e

a

+
–

2

1

b2

b1

I

I

Q

Q

12. In the following circuit find Ic and Vout, if Vin = 3 V.

Vout

1 kΩ

5 V
b

c

e

�

�

β = 100

Vin

�

�

100 kΩ +
–

C

B
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13. In the circuit shown below find Io.

76 mΩ

9 V

10 kΩ 1 kΩ

β1 = 99

β2 = 100

Io

d

b

c

e

a

+
–

b1

1

2
b2

I

I

Q

Q
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C H A P T E R 7

Operational Amplifiers

7.1 OVERVIEW
In this chapter we will learn about operational amplifiers and a number of circuits

that we can construct using operational amplifiers.

7.2 INTRODUCTION
In this chapter we will look at a wonderful “component” called the operational

amplifier or op-amp for short. The word component is in quotes because the op-amp

is itself quite a complicated circuit containing resistors, capacitors, and transistors.

However, we are not concerned with the internal construction of the op-amp but

rather how the output of the op-amp is related to the input of the op-amp. In

other words we want a component rule for the op-amp, which we can use in our

analysis of circuits containing op-amps. In this context we treat the op-amp as a

single component with some surprisingly simple rules that can be used to relate the

voltage at the output terminals of the op-amp to the voltage at the input terminals.

We do this by using a simple model of the op-amp that is reasonably accurate in

terms of its functional behavior.

7.3 COMPONENT RULE
There are actually several models of the op-amp that are used in practice (one

of them is shown in Fig. 7.2). The symbol for the op-amp is shown in Fig. 7.1.

Notice in Fig. 7.1 that the op-amp is connected to a power supply. Like the transistor
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+v+

v–

i+

i –

–V

+V

–

FIGURE 7.1: A symbol for an operational amplifier.

an op-amp requires an external power source to function as an op-amp. This makes

it an active component like the transistor. Because we know that an op-amp cannot

function without an outside power source we often do not include the power supply

connection in the circuit diagrams.

In the model for the op-amp shown in Fig. 7.2 we have ignored the external

power supply connections. In order to calculate the voltage Vout at the output of

the op-amp, lets label the circuit as shown in Fig. 7.2. By the Kirchhoff ’s voltage

law

Vout = Vac = Vab + Vbc

As there is no current flowing through the resistor the voltage across the resistor

Vab = 0. Therefore,

Vout = Vab + Vbc = Vbc

Ri

R

A(v+ – v–)

ov

v

+

–

–
+

+

–

vout

FIGURE 7.2: A model for an operational amplifier.
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The voltage Vbc is the voltage generated by the funny looking voltage source.

Thus,

Vout = Vbc = A (V+ − V−)

Or in other words, the output of the op-amp is a gain factor A multiplied by

the difference in voltage V+ − V−. The value of the gain or amplification factor A

is generally assumed to be very large (in fact we often assume that the gain of the

op-amp approaches infinity). According to the model this means that for a small

voltage V+ − V− we can get a very large output voltage. However, you never get

something for nothing and, in practice, the maximum output voltage we can have

is limited by the voltage of the power supply V . The only way we can balance these

two requirements of A being very large, and Vout being limited is to require that

V+ − V− be very small. In fact this difference is small enough that we can assume

that V+ = V−. This assumption is called the virtual short assumption. Given the

model of Fig. 7.2 if this true it necessarily implies that I+ = I− = 0. Otherwise

V+ − V− would have a nonzero value of I+ Ri. These two operating assumptions

1. I− = I+ = 0

2. V− = V+

make up the component rule for the op-amp. From here on we will ignore the

model and simply use the component rule.

As with the other components we can use the component rule along with the

two Kirchhoff ’s laws to analyze op-amp circuits. Op-amp circuits rely on feedback

for their operation. The feedback is provided by connecting a circuit component

between the output of the op-amp and the terminal marked with a negative sign,

called the inverting terminal. In our analysis it will not seem to make a difference

whether the feedback connection is to the inverting terminal or the terminal marked

with a positive sign (called the non-inverting terminal ). However, in practice it

makes a huge difference for reasons we will not go into here. Therefore, we will

make a point of indicating that the feedback connection is to the inverting terminal.
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Because the component rules for the op-amp are so simple, the appearance

of an op-amp in a circuit generally makes it easier to analyze the circuit. While

there may be differences in particular cases, in general the following procedure for

analyzing op-amp circuits works most of the time:

1. Write the Kirchhoff ’s current law at the inverting terminal. Make use of

the fact that I− = 0.

2. Make use of the virtual short to find the voltage at the inverting terminal

with respect to the reference node.

These instructions are a bit vague. We will make them more precise as we work

through examples. One pitfall you should avoid is writing the current law at the

output of the op-amp. This not because the Kirchhoff ’s laws do not hold at the

op-amp output; regardless of the component, the Kirchhoff ’s laws always hold. It

is because we have specified no rule for relating the output current of the op-amp

to any other parameter in the circuit. The only way we can figure out the output

current is to infer it from the rest of the circuit.

The number of useful circuits that can be built using op-amps, together with

the other components we have looked at, are enormous. In what follows we look

at some of the more popular configurations.

7.4 VOLTAGE FOLLOWER
The first circuit we look at is the simplest. As shown in Fig. 7.3, we connect the

output of the op-amp (terminal c) directly to the inverting terminal of the op-amp.

+

vout

v

v
vin

a
+

– –

+–

+

–

b

c

FIGURE 7.3: Voltage follower circuit.
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Terminal c and terminal b make up the output terminals, while terminal a and

terminal b make up the input terminals. Let us find the voltage between terminals

c and b, or Vout in terms of Vin, which is the voltage between terminals a and b.

The voltage at the noninverting terminal of the op-amp with respect to node b Vab

is simply Vin. Because the inverting terminal of the op-amp is connected directly

to node c the voltage at node c with respect to node b, or Vout is the voltage at the

inverting terminal with respect to node b. But by the virtual short assumption the

voltage at the inverting terminal with respect to node b is the same as the voltage

at the noninverting terminal with respect to node b. Therefore

Vout = Vin

This seems rather anticlimactic. Why not forget the op-amp and just connect

node a to node c? To see the advantage provided by the op-amp let us return to the

problem of the voltage divider we had looked at earlier. We wanted to obtain 5 V

from a 9-V battery. One of the circuits we used is shown in Fig. 7.4. At the output

terminal this circuit indeed does give us 5 V.

Suppose the circuit that requires the 5 V has a resistance of 100 k�. Let’s

model this circuit as a 100 k� load resistor and connect it to our 5-V “source” as

shown in Fig. 7.5. Now let’s calculate the voltage across the 100 k� load resistor.

Picking b as our reference node we can write the current law at node a. Writing

each current in terms of the node voltages we obtain

9 − Vab

40 × 103
= Vab

50 × 103
+ Vab

100 × 103

9 V
50 kΩ

40 kΩ

FIGURE 7.4: Voltage divider circuit.



P1: IML/FFX P2: IML/FFX QC: IML/FFX T1: IML

MOBK001-07 Morgan & Claypool Morgan-v3.cls September 29, 2005 7:31

124 UNDERSTANDING CIRCUITS

a

b

9 V

40 kΩ

50 kΩ 100 kΩ

FIGURE 7.5: Voltage divider circuit with a 100 k� load resistor.

Solving for Vab we obtain

Vab = 45
11

= 4.09 V

This represents a drop of almost 20% from the required voltage level of 5 V. Instead

of delivering 5 V to the load, we are delivering only about 4 V!

Now let’s try something different. Connect the voltage divider to the voltage

follower circuit and connect the load to the output of the voltage follower as shown

in Fig. 7.6. We have again represented the load with a 100 k� resistor. Let us find

the voltage across the 100 k� resistor.

From Fig. 7.6 we can see, by the virtual short assumption, that Vout, the

voltage across the 100 k� resistor, is equal to the voltage at node a with respect to

node b. Let us write the current law at node a using node b as the reference node.

9 − Vab

40 × 103
= Vab

50 × 103
+ I+

50 kΩ

40 kΩ

+

vout

i

i

–

+–

+

–
100 kΩ

a

9 V

b

c

FIGURE 7.6: The voltage divider revisited.
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But I+ = 0 from assumption 1, therefore we have

9 − Vab

40 × 103
= Vab

50 × 103

or

Vab = 5 V

Thus the voltage across the load is 5 V as desired. Unlike the case without the

op-amp, connecting the load had no effect on the voltage across the 50 k� resistor.

How did this happen? If we trace back the steps in the analysis above we can

see that the critical factor was the fact that the op-amp does not draw any cur-

rent from the input stage. This means that we can add different combinations of

components to the output stage without “loading” the input. Without drawing any

current from the input, the op-amp voltage follower maintains the same voltage at

the output that it sees at its input. The voltage follower thus buffers what is con-

nected at its input from what is connected at its output terminals. This is useful in

a large number of applications, such as when designing sensors. We do not want

the sensing operation to disturb the operation of the system, so it is useful to have

a buffer between the system and the sensor that protects the system but still allows

the sensor to get on with its job. This is especially true when the system in question

is a human being. When we connect electrodes to people to measure electrical

activity in their brain or muscles we do not want any malfunction in the recording

equipment to result in an attempt to draw current from the body. A voltage follower

is a very useful tool for providing the isolation necessary.

While this is a very useful application of the op-amp, it is not the only one.

In the next sections, we show some more applications of this component.

7.5 AMPLIFIER
As the name implies, one of the most popular application of the op-amp is as

an amplifier. Amplification is obtained using feedback from the output. There

are several different ways we can connect up the op-amp to obtain amplification.
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+i

a

vo
+

–

vi

b c
d

Rf

Ri

+

–i

–

FIGURE 7.7: A simple op-amp circuit.

Two standard amplifier configurations are the inverting configuration and the non-

inverting configuration.

7.5.1 Inverting Op-Amp
The inverting op-amp configuration is shown in Fig. 7.7. Suppose we wish to find

Vo in terms of Vi given the resistance values Ri and Rf. Let’s take node a to be our

reference node and write the current law at node c

Idc + Ibc = I−

The currents Idc and Ibc are currents through resistors. We can use Ohm’s

law to write these currents in terms of the voltages across these resistors.

Vdc

Rf
+ Vbc

Ri
= I−

Writing these voltages in terms of the node voltages and noting that Vba = Vi and

Vda = Vo,

Vo − Vca

Rf
+ Vi − Vca

Ri
= I−

From our first operating assumption we have I− = 0, and from the virtual short

assumption we have Vca = Vaa = 0. So our equation becomes

Vo

Rf
+ Vi

Ri
= 0
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b
d

R

R

vi

1

2

c

–

+

vo

a

–
+

–i
+i

FIGURE 7.8: A noninverting amplifier circuit.

or

Vo = − Rf

Ri
Vi

By suitably picking the values of Rf and Ri we can get an output voltage

that is larger than the input voltage. Lest visions of an infinite power source begin

dancing in your head,1 remember that the output voltage is limited by the power

supply which is being used to power the op-amp. This kind of amplifier is called

an inverting amplifier. The “inverting” in the name comes from the fact that the

output is negative of the input.

7.5.2 Non-Inverting Op-Amp
We can also construct a noninverting amplifier as shown in Fig. 7.8.

If we write the current law at node c we will obtain

Idc = Ica + I−

The currents Idc and Ica are currents through resistors. Using Ohm’s law we can

write these currents in terms of the voltages across these resistors.

Vdc

R1
= Vca

R2
+ I−

1 Take the voltage fluctuations from your brain. Amplify them using an op-amp and run your television
with it—an exercise in killing your brain with brain power!
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Assuming a to be the reference node, writing these voltages in terms of node

voltages, and using the fact that Vda = Vo, we obtain

Vo − Vca

R1
= Vca

R2
+ I−

From assumption 1, I− = 0, and from the virtual short assumption Vca = Vi. Sub-

stituting these values into the equation, we get

Vo − Vi

R1
= Vi

R2

or,

Vo =
(

1 + R1

R2

)
Vi

By picking R1 to be much larger than R2 we can get significant amplification,

limited only be the power source. Notice that the polarity of the output voltage is the

same as the polarity of the input voltage.

7.6 THE ANALOG COMPUTER
Long before PC came to symbolize personal computer, there were computers much

much faster than any digital computer yet designed. These were analog comput-

ers that performed arithmetic and calculus. The building blocks for these analog

computers were op-amps. While the analog computer is no more the circuits that

performed the computations in the analog computer are still widely used. In this

section we look at some of these circuits.

7.6.1 Adding Circuit
Consider the circuit shown in Fig. 7.9. This is a addition circuit.

V0 = − R0

R1
V1 − R0

R2
V2 − R0

R3
V3

In order to analyze this, as before, we write the Kirchhoff ’s current law at the

inverting terminal, which in the figure is node e.

Ibe + Ice + Ide + Ife = I−



P1: IML/FFX P2: IML/FFX QC: IML/FFX T1: IML

MOBK001-07 Morgan & Claypool Morgan-v3.cls September 29, 2005 7:31

OPERATIONAL AMPLIFIERS 129

–

++i

R0

R1

R2

V0

R3

V3V2V1–
+

–i

–
+

–
+

FIGURE 7.9: A summing amplifier circuit.

Writing the currents through the resistors in terms of the voltages across the resistors

and noting that I− = 0 we obtain

Vbe

R1
+ Vce

R2
+ Vde

R3
+ Vfe

R0
= 0

Using node a as the reference node and writing the voltages in terms of the node

voltages we get

Vba − Vea

R1
+ Vca − Vea

R2
+ Vda − Vea

R3
+ Vfa − Vea

R0
= 0

Noting that Vba = V1, Vca = V2, Vda = V3, and Vfa = V0 we get

V1 − Vea

R1
+ V2 − Vea

R2
+ V3 − Vea

R3
+ V0 − Vea

R0
= 0

Now we use the virtual short assumption to note that Vea = Vaa = 0, and

therefore,

V1

R1
+ V2

R2
+ V3

R3
+ V0

R0
= 0

Solving for V0 we obtain

V0 = − R0

R1
V1 − R0

R2
V2 − R0

R3
V3

If we pick all the resistors to be identical we get

V0 = −(V1 + V2 + V3)
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+

–

a

b

c

d

e
f

V1 V2 Vo

R1

R1

R2

R2

+
–

+
–

–

+

FIGURE 7.10: A difference circuit.

which is the negative of the sum of the inputs. We can easily get rid of the negative

sign by using an inverting op-amp with unity gain. By letting the resistors take

on different values we can design a circuit that will give us a weighted sum of the

inputs. However, all the weights have to be the same sign. In the next application

we see how we can change the sign.

7.6.2 Subtraction Circuit
Consider the circuit shown in Fig. 7.10. Notice that unlike the previous circuits there

are components connected to the noninverting terminal of the op-amp. Despite

this change the analysis proceeds as it did for the previous circuits. We first write

the KCL at the inverting terminal, which in this case is node d.

Ibd + Ifd = I−

Writing the currents through the resistors in terms of the voltages across the

resistors and noting that I− = 0 we get

Vbd

R1
+ Vfd

R1
= 0

Multiplying both sides by R1

Vbd + Vfd = 0
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Picking node a as the reference node we can write the voltages in terms of

the node voltages and use the fact that Vba = V1 and Vfa = Vo to obtain

V1 − Vda + Vo − Vda = 0

or,

Vo = 2Vda − V1 (7.1)

At this point in the previous analyses, we used the virtual short assumption to

set the voltage at the inverting terminal equal to the voltage at the noninverting

terminal. We do the same here and set Vda = Vea. However, unlike earlier analyses

where the noninverting terminal was directly connected to the reference node, we

have to do some work to get the value of Vea. Fortunately, it is not a lot of work.

Writing the current law at node e we get

Ice = Iea + I+

Writing the currents through the resistors in terms of the voltages across the

resistors and using the fact that I+ = 0 we get

Vce

R2
= Vea

R2

Multiplying both sides by R2, writing the voltages in terms of node voltages, and

substituting Vca = V2 we get

V2 − Vea = Vea

or

Vea = 1
2

V2

Substituting this value of Vea for Vda in Eq. (7.1) we get

Vo = V2 − V1
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Notice that in the circuit of Fig. 7.10 we have four resistors but only two

distinct values. If we had allowed all four resistor values to vary we would have

obtained a relationship of the form

Vo = αV2 − βV1

where the values of α and β would depend on the values of the four resistors.

7.6.3 Implementing Algebraic Equations
By combining the strategies used in the addition and subtraction circuits we can

implement any algebraic equation using op-amps. Consider the following exa-

mple:

Example 7.6.1: We are asked to implement the equation

Vo = 2V1 − 3V2 − 2V3 (7.2)

using op-amps. Let’s first try to implement the equation directly. Sometimes it

might be easier to implement the negative of the equation and then use an inverting

op-amp to fix the polarity. Notice that V2 and V3 have the same polarity, which is

opposite to that of V1, so if we were to implement this using a single op-amp the V2

and V3 inputs would go to one terminal while the V1 input would go to the other

terminal. Based on the polarities the V2 and V3 inputs would go to the inverting

terminal, while the V1 input would go to the noninverting terminal. Therefore, the

circuit would look as shown in Fig. 7.11.

To find the values of the various resistors, let’s write the current law at the

noninverting input, or node e.

Ide + Ice + Ige = I−

Writing the currents through the resistors in terms of the voltages across the resistors

and using the fact that I− = 0

Vde

R3
+ Vce

R2
+ Vge

Ro
= 0
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Vo

+

–

V1V2V3

a

b
c

d

e

f
gR2

R1

R4

RoR3

+
–

+
–

+
–

–

+

FIGURE 7.11: Implementing an algebraic equation.

Picking node a to be the reference node and writing the voltages in terms of

the node voltages,

Vda − Vea

R3
+ Vca − Vea

R2
+ Vga − Vea

Ro
= 0

Now substitute the values of Vda, Vca, and Vga

V3 − Vea

R3
+ V2 − Vea

R2
+ Vo − Vea

Ro
= 0

Expanding this out

Ro R2V3 − Ro R2Vea + Ro R3V2 − Ro R3Vea + R2 R3Vo − R2 R3Vea = 0

or

R2 R3Vo = (Ro R2 + Ro R3 + R2 R3)Vea − R0 R3V2 − R0 R2V3

Dividing both sides by R2 R3 we obtain

Vo = Ro R2 + Ro R3 + R2 R3

R2 R3
Vea − Ro

R2
V2 − Ro

R3
V3 (7.3)

Looking at the circuit and using the fact that we will find Vea by using the

virtual short assumption it is clear that Vea will be in terms of V1. Therefore, the
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coefficients of V2 and V3 will be Ro/R2 and Ro/R3 respectively in the final equation.

Looking at the equation we want to implement, it is clear that

Ro

R2
= 3 and

Ro

R3
= 2

or

R2 = Ro

3
R3 = Ro

2
(7.4)

Substituting these values of R2 and R3 into Eq. (7.3) we get

Vo = 6Vea − 3V2 − 2V3

Using the virtual short assumption and writing the current law at node f we obtain

Vea = Vfa = R4

R1 + R4
V1

From Eq. (7.2) we know that

6Vea = 6
R4

R1 + R4
V1 = 2V1

which will be true if

R1 = 2R4 (7.5)

Now all we need to do is to pick resistor values that satisfy Eqs. (7.4) and

(7.5). In practice not all resistor values may be available and there may be other

constraints as well. For this example we do not worry about those constraints so

we have an infinite number of possible solutions. One solution would be to pick

Ro = 6 k�. From Eq. (7.4) this would mean R2 = 2 k� and R3 = 3k�. If we pick

R4 = 1 k�, from Eq. (7.5), R1 = 2 k�.

7.6.4 Integration
In order to perform integration using op-amps we have to broaden our horizons

a bit and use capacitors as well as resistors in our circuit. An integrator circuit is

shown in Fig. 7.12. To see that this circuit really does perform integration, let’s
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v i(t)
vo(t)

C

R

a

b c
d–

++
–

FIGURE 7.12: An integrator circuit.

calculate Vo(t) in terms of Vi(t) . Writing the current law at the inverting termi-

nal.

Ibc + Idc = I−

Ibc is the current through a resistor so we can write it in terms of the voltage across

the resistor using Ohm’s law. Idc is the current through a capacitor so we use the

capacitor component rule to write Idc in terms of Vdc. The current I− is zero.

Vbc

R
+ C

d
dt

Vdc = 0

Picking a to be the reference node and writing the voltages in terms of node voltages

we get

Vba − Vca

R
+ C

d
dt

(Vda − Vca) = 0 (7.6)

Using the virtual short assumption Vca = Vaa = 0. Substituting Vba = Vi(t)

and Vda = Vo(t) into Eq. (7.6) we obtain

Vi(t)
R

+ C
d
dt

Vo(t) = 0

or

d
dt

Vo(t) = − 1
RC

Vi(t)
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vi(t) vo(t)

a

b c
d

C

R

–

++
–

FIGURE 7.13: A differentiator circuit.

Integrating both sides

Vo(t) = − 1
RC

∫
Vi(t) dt

Thus the output voltage is a scaled integral of the input voltage.

7.6.5 Differentiation
By switching the places of the resistor and capacitor as shown in Fig. 7.13 we can

obtain a circuit whose output is the derivative of the input. Writing the current law

at the inverting input we obtain

Ibc + Idc = I−

In this case Ibc is the current through the capacitor and Idc is the current through

the resistor.

C
d
dt

Vbc + Vdc

R
= 0

Writing these voltages in terms of the node voltages with a being the reference

node.

C
d
dt

(Vba − Vca) + Vda − Vca

R
= 0
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Using the virtual short assumption Vca = Vaa = 0. Substituting Vba = Vi(t) and

Vda = Vo(t) into the equation we get

C
d
dt

Vi(t) + Vo(t)
R

= 0

or

Vo(t) = −RC
d
dt

Vi(t)

The integrator and differentiator circuits are used in many different applica-

tion. One way they can be used is to simulate differential equations. As differential

equations are used to model a whole variety of complex systems, including economic

systems, chemical systems, mechanical systems and of course, electrical systems,

this is a very useful application.

7.7 SUMMARY
In this chapter we have introduced the operational amplifier, a complex and useful

component with a surprisingly simple component rule. We have shown how the

op-amp can be used to amplify voltages, to act as a buffer, and to implement various

algebraic operations.

7.8 PROBLEMS
1. In the following circuit find Vout.

Vout

�

+

12 V

8 kΩ

4 kΩ

+
–

–

+
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2. In the following circuit find Vout.

Vout

�

+

12 V

8 kΩ

4 kΩ 12 kΩ

4 kΩ

+
–

–

+

3. In the following circuit find Vo.

1.1 kΩ

4 kΩ

2 kΩ
2 V

–
+

–

–

+

+

vout

+

–

4. In the circuit below find Vout.

Vout

9 V

6 kΩ

3 kΩ 12 kΩ

4 kΩ

+
–

–

+

–

+
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5. In the following circuit find Vout.

Vout

+

�

5 V

3 kΩ

6 kΩ

10 kΩ

4 kΩ
+
–

–

+

6. In the following circuit find Vout.

20 kΩ

5 kΩ
6 kΩ

12 kΩ

Vout

�

�

3 V

–

+

+
–

–

+

7. In the following circuit find Vout.

Vout

�

�

3 V 6 V

20 kΩ

1 kΩ

2 kΩ

5 kΩ

+
–

+
–

–

+



P1: IML/FFX P2: IML/FFX QC: IML/FFX T1: IML

MOBK001-07 Morgan & Claypool Morgan-v3.cls September 29, 2005 7:31

140 UNDERSTANDING CIRCUITS

8. In the following circuit find Vout when Vin = 0.5 V.

–

+

Vin Vout

–
+

–

+

+
–

8 kΩ

4 kΩ

12 kΩ

4 kΩ

9. In the following circuit find Vo.

Vout
5 V 4 V

40 kΩ

20 kΩ

5 kΩ

5 kΩ

+
–

+
–

–

–

+ +

10. In the following circuit find Vout when Vin = 0.5 V.

–

+

Vin

+
–

–

+

Vout

–

–

+

+

9 kΩ

3 kΩ

10 kΩ

5 kΩ
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11. In the circuit below find Ic and Vce if Vin = 0.5 V.

12 V

IC

IE
Vout

�

�

β = 100�

�

Vin 8 Ω

10 Ω

+

6 kΩ
3 kΩ

+
––




